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Question:  
How enzymes are able to maintain coordinative unsaturation at active sites in the 
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Enzyme Catalysis

How enzymes are able to maintain coordinative unsaturation at active sites in the 
presence of inhibitors on the protein backbone, and in such close proximity?
View:
Protein backbone consists of a series of conjoined, rigid, nanoscale segments 
which could form a cage structure to surround each metal-cluster active site with 
an effective mesh size large enough to be penetrable to small molecules but not to 
other rigid protein segments.

Goal :
Translate this mechanism to the realm of synthetic metal clusters, using 
calix[4]arene macrocycles as crude mimics of rigid protein backbone segments.
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Previously used ligands:
Cucurbituril, β-cyclodextrin, Dendron, Dendrimer and Polymer based ligands

Criteria:
Using organic ligands to ultimately control the electronic and catalytic
properties of a metal-cluster active site requires the design and synthesis of
specific ligands for the metal surfaces.

The ligands must have precisely positioned functional groups through
which their interaction with the metal surfaces can be precisely controlled,
and must allow accurate measurement of the surface accessibility of the
resulting metal cluster–ligands systems.
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Illustration of comparative synthetic approach adopted to control the accessibility 
of gold clusters through bulky calix[4]arene ligands.



Introduction Results & Discussion         summary & Conclusions        Future window

Cloudy 
solution

Ligand + 
Au(SMe2)Cl

CH2Cl2/ dark 
20 min

Filtration 

Clear 
solutionsolution

White powder

Evaporation

NaBH4/ EtOH

Au cluster

Structure of molecular precursors, and
images and particle size distributions of
gold clusters. a–c

Scheme for preparation of gold 
cluster



Introduction Results & Discussion         summary & Conclusion          Future window

Single crystal X-ray 
crystallographic structure of tert-

31P NMR spectrum of {Au-1}-2a at -60 °C 

crystallographic structure of tert-
butyl-calix[4]-(OR)2(OCH2PPh2)2 (R 
= C3H7-n) 

Cone like structure



UV-Visible
spectra of
(a) {Au-1}-2a,
(b) {Au-2}-2b,
and(c) {Au-3}-
2c
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UV-Vis spectra of gold clusters 
before (black) and after (red) 
addition of 40-fold excess 2NT 

(a) P 2p and (b) Au 4f XPS results of {Au-1}-2a,
{Au-2}-2b, and {Au-3}-2c. Deconvolution of {Au-
1}-2a P 2p results in (a) is shown in (c). Binding
energy is corrected by C 1s at 284.6 eV



ESI mass spectra[M-Cl]+ molecular ions of precursors  1a 

Introduction Results & Discussion         summary & Conclusions        Future window

ESI mass spectrum showing a molecular ion fragment in {Au-1}-2a 
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(a)Fluorescence emission intensity and 
(b) emission spectra of 2NT on {Au-2}-2b 

(a)Fluorescence emission intensity and 
(b) emission spectra of 2NT on {Au-3}-2c 
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a) Fluorescence 
emission
intensity of 2NT 
on {Au–1}–2a 
(squares) and 
Au11(PPh3)7(SCN)3
(triangles)
clusters

Fluorescence emission spectra of 2NT on 
(a) {Au-1}-2a and (b) Au11(PPh3)7(SCN)3 

b) Fraction of gold surface atoms that are 
bound with 2NT (lower bound) versus 
cluster diameter
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The design and synthesis of organic ligand-bound gold clusters using a
bioinspired approach is demonstrated, in which calix[4]arene phosphine ligands
serve as crude macrocyclic mimics of rigid protein backbone segments.

The resulting electron-rich clusters show that using an organic ligand is a
versatile approach to modify the electronic properties of the metal.

The calixarene-bound clusters demonstrate high levels of accessibility, with 
up to 25% of the total gold atoms binding chemisorption probe 2NT in cluster up to 25% of the total gold atoms binding chemisorption probe 2NT in cluster 
{Au–1}–2a, which is in contrast to a complete lack of accessibility observed in 
similarly sized Au11-phosphine clusters as well as larger gold nanoparticles.

The observed abrupt increase in accessibility when the metal-core diameter
is smaller than the calixarene ligand size suggests a new and general
mechanism of accessibility in organic ligand-bound metal clusters.
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 surface-accessibility can be controlled by careful selection of the stabilizing
ligands. This effect could represent a general mechanism for the reactivity of
organic ligand bound metal clusters, and could potentially be used to control
their surface accessibility. The next step will be to apply these clusters in a
catalytic reaction.

 As we are now using small protein like Lysozyme to establish the cluster 
formation mechanism, we can use this as a model for big proteins. We can 
extend this to see the catalysis in protein protected cluster as model. extend this to see the catalysis in protein protected cluster as model. 

Can cluster be the active site in protein protected clusters??
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Question:  

How enzymes are able to maintain coordinative unsaturation at active sites in the presence of inhibitors on the protein backbone, and in such close proximity?

View:

Protein backbone consists of a series of conjoined, rigid, nanoscale segments which could form a cage structure to surround each metal-cluster active site with an effective mesh size large enough to be penetrable to small molecules but not to other rigid protein segments.
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Goal :

Translate this mechanism to the realm of synthetic metal clusters, using calix[4]arene macrocycles as crude mimics of rigid protein backbone segments.













Enzyme Catalysis
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Previously used ligands:

Cucurbituril, β-cyclodextrin, Dendron, Dendrimer and Polymer based ligands





Criteria:

Using organic ligands to ultimately control the electronic and catalytic properties of a metal-cluster active site requires the design and synthesis of specific ligands for the metal surfaces. 



The ligands must have precisely positioned functional groups through which their interaction with the metal surfaces can be precisely controlled, and must allow accurate measurement of the surface accessibility of the resulting metal cluster–ligands systems.
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Illustration of comparative synthetic approach adopted to control the accessibility of gold clusters through bulky calix[4]arene ligands.
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31P NMR spectrum of {Au-1}-2a at -60 °C 

Single crystal X-ray crystallographic structure of tert-butyl-calix[4]-(OR)2(OCH2PPh2)2 (R = C3H7-n) 

Cone like structure







UV-Visible spectra of  

(a) {Au-1}-2a, (b) {Au-2}-2b, and(c) {Au-3}-2c 
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UV-Vis spectra of gold clusters before (black) and after (red) addition of 40-fold excess 2NT 



(a) P 2p and (b) Au 4f XPS results of {Au-1}-2a, {Au-2}-2b, and {Au-3}-2c. Deconvolution of {Au-1}-2a P 2p results in (a) is shown in (c). Binding energy is corrected by C 1s at 284.6 eV 











ESI mass spectra[M-Cl]+ molecular ions of precursors  1a 

 

ESI mass spectrum showing a molecular ion fragment in {Au-1}-2a 
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(a)Fluorescence emission intensity and (b) emission spectra of 2NT on {Au-2}-2b 



(a)Fluorescence emission intensity and 

(b) emission spectra of 2NT on {Au-3}-2c 
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Fluorescence emission spectra of 2NT on (a) {Au-1}-2a and (b) Au11(PPh3)7(SCN)3 

a) Fluorescence emission

intensity of 2NT on {Au–1}–2a (squares) and Au11(PPh3)7(SCN)3 (triangles)

clusters

b) Fraction of gold surface atoms that are bound with 2NT (lower bound) versus cluster diameter
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The design and synthesis of organic ligand-bound gold clusters using a bioinspired approach is demonstrated, in which calix[4]arene phosphine ligands serve as crude macrocyclic mimics of rigid protein backbone segments.

The resulting electron-rich clusters show that using an organic ligand is a versatile approach to modify the electronic properties of the metal.

The calixarene-bound clusters demonstrate high levels of accessibility, with up to 25% of the total gold atoms binding chemisorption probe 2NT in cluster {Au–1}–2a, which is in contrast to a complete lack of accessibility observed in similarly sized Au11-phosphine clusters as well as larger gold nanoparticles.

The observed abrupt increase in accessibility when the metal-core diameter is smaller than the calixarene ligand size suggests a new and general mechanism of accessibility in organic ligand-bound metal clusters.
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 surface-accessibility can be controlled by careful selection of the stabilizing ligands. This effect could represent a general mechanism for the reactivity of organic ligand bound metal clusters, and could potentially be used to control their surface accessibility. The next step will be to apply these clusters in a catalytic reaction. 

 As we are now using small protein like Lysozyme to establish the cluster formation mechanism, we can use this as a model for big proteins. We can extend this to see the catalysis in protein protected cluster as model. 



Can cluster be the active site in protein protected clusters??
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Table | Summary of characterization data for gold clusters bound with lower-rim substituted calixarene-phosphine ligands.

Goldcluster  Ligand  Diameter (n*)  Au/P' Auw%")  Au4f BE (FWHM) (V")  Total Au 2NT bound'
(Surface Au 2NT bound)" (%)

TAur2a 2 05101 ] Ed 8415 (164) 250 (25.0)

{Auw-2)-2b 2b 11102 178+009 38 8365 (1.3) 63(80)

{Au-3}-2¢ 2 19+05 325:015 40 8355 (111) 122D

{Auw-d}-22 2 4109 N/D N/D N/D 0000

{Aw-a}-2c 2 41109 N/D N/D N/D 0000

{Aw-a}3 3 41309* N/D N/D 8385 (1.09)* 148"
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