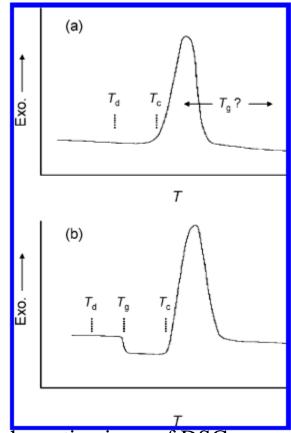
Roles of Individual and Cooperative Motions of Molecules in Glass-Liquid Transition and Crystallization of Toluene

Ryutaro Souda

International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan

J. Phys. Chem. B, 2010, 114, 10734

Radha Gobinda Bhuin CY10D047 08-01-11


Introduction...

• Glass-forming liquids are of two types: One in which viscosity behaves in a nearly Arrhenius fashion and their heat capacity changes very little across T_g and another in which are characterized by a strong non-Arrhenius behaviour in viscosity and a substantial drop in heat capacity at T_g .

* T_g has been determined from the onset temperature of the heat capacity jump in differential scanning calorimetric (DSC).

* Difficulties are often encountered in assignments of calorimetric T_g of poorly glass-forming materials

♦ It is quite important to determine the onset temperature of self-diffusion of molecules, T_d , and reveal its roles in the glass-liquid transition and crystallization.

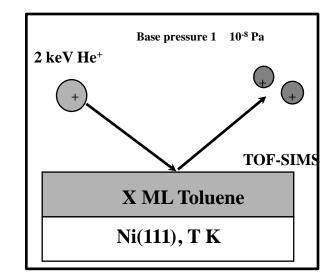
Figure 1. Schematic views of DSC scans. No appreciable glass transition endotherm is observed for water (a), although good glass formers like toluene (b) exhibit glasstransition endotherm (T_g) prior to crystallization exotherm (T_c). Because of decoupling, the translational molecular diffusion might occur at T_d prior to the glass transition at T_g , but the former is difficult to be identified using DSC.

In this paper...

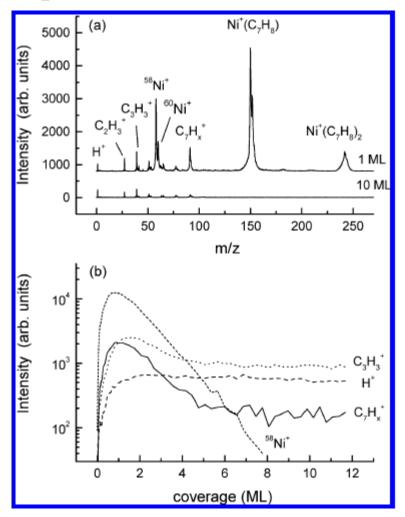
* TOF-SIMS is used for the analysis of the glass-liquid transition dynamics and investigated correlations between microscopic molecular diffusion and macroscopic hydrodynamics of vapour-deposited toluene films.

Experimental section...

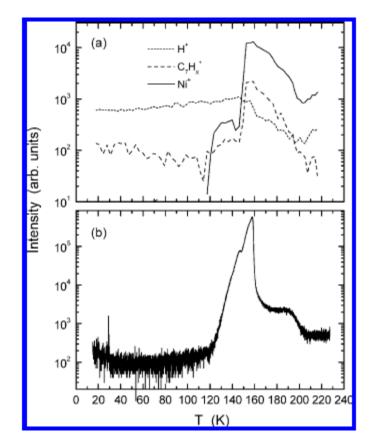
 \clubsuit sample surface was floated with a bias voltage of +500 V.

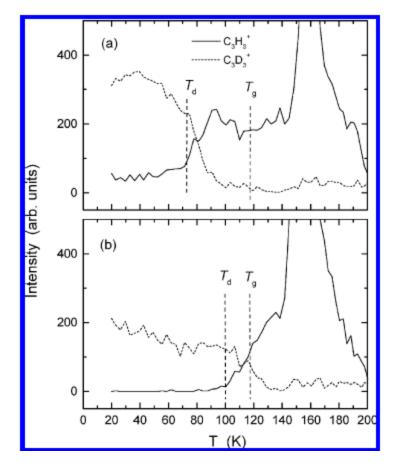

✤ Positive secondary ions were extracted from the surface by a grounded stainless steel mesh placed immediately in front of the sample.

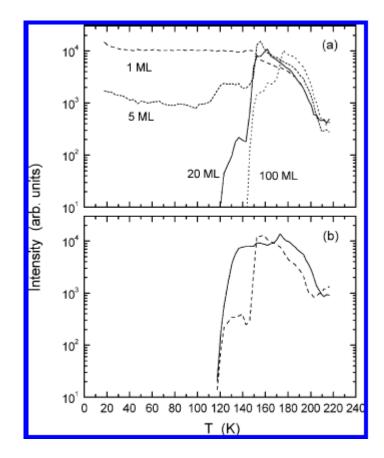
✤ They were pulse counted using a channel plate after travelling through a field free linear TOF tube.


✤ The TOF-SIMS spectrum was created using a multichannel scalar.

To determine T_{c_i} TPD spectra of toluene were taken using a differentially pumped quadrupole mass analyzer.


✤ The TOF-SIMS and TPD spectra were recorded at the same ramping speed of 5 K min⁻¹.


Experimental Results...


Figure 2. (a) Typical TOF-SIMS spectra from the toluene-deposited Ni(111) surface. The results between 1- and 10-ML toluene films are compared. (b) Evolutions of typical secondary ion intensities as a function of coverage of toluene deposited on the Ni(111) surface at 15 K.

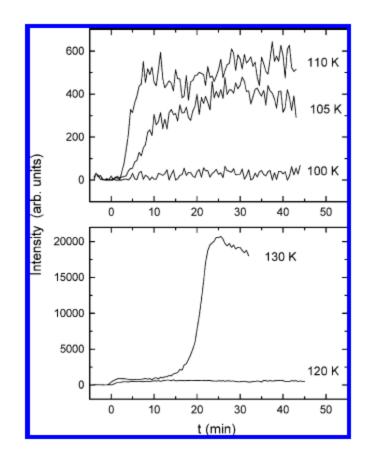

Figure 3. Temperature-programmed TOF-SIMS intensities from the 10-ML toluene film (a) and a corresponding TPD spectrum of toluene (m/z = 92) (b). The temperature was increased at a rate of 5 K min⁻¹.

Figure 4. Temperature-programmed TOF-SIMS intensities of $C_3H_3^+$ and $C_3D_3^+$ ions sputtered from the 1-ML toluene-d₈ molecules deposited on the 20-ML toluene films deposited at 15 (a) and 100 K (b).

Figure 5. (a) Temp-programmed TOF-SIMS intensities of Ni⁺ from the Ni(111) substrate on which 1-100 ML toluene molecules were deposited at 15 K. (b) The effect of pre-existing crystals on dewetting of the glassy toluene film is monitored by evolution of the Ni⁺ intensity. The 10-ML glassy film deposited on crystalline toluene (solid line) is compared with that deposited directly on Ni(111) (dottedline). The crystalline toluene film was prepared by annealing the 10-ML glassy film at 130 K for 33 min.

Figure 6. Isothermal TOF-SIMS intensities of the Ni⁺ ion sputtered from the Ni(111) substrate on which 10-ML toluene films were deposited at 15 K. The negative time corresponds to the time required for heating the sample to temperatures indicated in the figure.

Conclusion...

* The microscopic origins of fragility and the α and β relaxations of deeply super cooled liquids were investigated by using TOF-SIMS.

♦ The toluene molecules move individually in the sub-T_g region (T_d ≈ 100 K).

♦ The film deposited at 15 K is characterized by low density and exhibits lower T_d (~70 K).

* The film morphology changes at $T_g = 117$ K because super cooled liquid emerges, but no apparent change in diffusivity of the molecules is recognizable across T_g .

* The glass-liquid transition is a two-step process: Strong liquid is formed at T_d and super cooled (or fragile) liquid is created at T_g .

* The calorimetric assignment of water's T_g is fundamentally impossible because super cooled liquid water crystallizes immediately.

* The super cooled liquid toluene nucleates spontaneously at $T_c = 147$ K, where the growth of crystal grains results in a more significant change in the film morphology than that observed at T_g .

My opinion...

Diffusivity of toluene (or benzene) through water and vice-versa (i.e. intermolecular diffusion) can be checked at temperature lower than the glass-liquid transition temperature.

✤ Low energy ion scattering experiment can also be done on toluene surface by using different projectile.

THANK YOU