Hydrogenation of solid hydrogen cyanide HCN and methanimine CH₂NH at low temperature

P. Theule, F. Borget, F. Mispelaer, G. Danger, F. Duvernay, J. C. Guillemin, and T. Chiavassa

Background...

- Chemistry deals with molecular transformations.....past to future
- Interstellar chemistry:- reactions in space. (low temperature <10K; extreme high vacuum ~10⁻¹⁵ mbar).
- No thermal activation, no collisional activation.
- A kind of non-thermal non-equilibrium reaction kinetics takes place.
- ISM has mainly 2 parts: Gas and Dust
- It's the same molecules, but it's a different kind of chemistry takes place.

"If you are a gas atom, you might collide with another one every day or so, instead of the billions of collisions per second that take place in a gas at atmospheric pressure". By Eric Herbst (Ohio State

University).

•http://www.chem.hawaii.edu/Bil301/solidstate.html

<u>http://www.rsc.org/chemistryworld/News/2005/October/19100501.asp</u>
<u>http://www.physics.ohio-state.edu/~eric/research_files/cen.htm</u>

- Surface hydrogenation play an important role in the evolution of molecules on interstellar ices.
- Especially at low temperature in dense molecular clouds where the secondary photon field is very weak and where hydrogen atoms have an important residence time on the surface.

- Various studies show that hydrogenation of CO gives H₂CO and CH₃OH.*
- $> O_2$ and O_3 hydrogenation gives Solid H₂O.^{**}
- > Hydrogenation of a CO:O₂ mixture gives HCOOH.^{***}
- > Hydrogenation of CH₃CHO gives C₂H₅OH, CH₃OH, H₂CO and CH₄.****

- They bombarded solid hydrogen cyanide (HCN) and methanimine (CH₂NH) with warm H-atoms.
- Ice analog composition were monitored by FT-RAIRS, and the hydrogenation products were analyzed by TPD experiments.
- > The product obtained was methylamine (CH_3NH_2).

*Hiraoka et al. 1998, ApJ, 498, 710; **Dulieu et al. 2010, A&A, 571, ***A30; loppolo et al. 2011, MNRAS,410, 1089; ****Bisschop et al. 2007, A&A, 474, 1061 3/17

- HCN is important in interstellar chemistry because it is the simplest molecule containing CN moiety which is a prerequisite to form amino acid.*
- It has been shown that CH₃NH₂ can thermally react with CO₂ in the solid phase to form a carbamate, which can be converted into a glycine salt under VUV irradiation.**
- This glycine salt eventually desorbs as gas-phase-neutral glycine (NH₂CH₂COOH).

Experimental Section

- A UHV chamber with a polished copper surface maintained at 15 K by a closed cycle He cryostat and heated by a temperature controller; temperature measured by a silicon diode sensor which is having 0.1 K uncertainty
- Gas phase species are measured by RGA-QMS and all TPD done with 5 K min⁻¹ ramping rate. Surface species measured by FT-RAIRS.
- Warm atomic Hydrogen was produced from a molecular hydrogen source (2.4 GHz microwave discharge).
- Atomic hydrogen flux was calibrated by hydrogenating CO ice at 15 K and measuring the H₂CO band at 1720cm⁻¹ and is calculated to be 1014 cm⁻² s⁻¹.

- > HCN was synthesized from thermal reaction of KCN and excess stearic acid $CH_3(CH_2)_{16}COOH$ in a primary pumped vacuum line.
- CH₂NH was obtained from the dehydrocyanation of NH₂CH₂CN which was done in by bubbling ammonia through NCCH₂NH₃⁺HSO₄⁻ suspended in CH₂Cl₂.

Temperature Programmed Desorption (TPD) spectroscopy

Results and Discussion

1. Hydrogenation of pure hydrogen cyanide HCN

Pure HCN infrared spectrum at 15 K before hydrogenation. Peak at 2349 cm⁻¹ corresponds CO_2 issued from the decomposition of stearic acid during the HCN synthesis and the mass spectrum of HCN at 114 K

Mass spectra of methanimine CH_2NH and methylamine CH_3NH_2 at T = 115 K and T = 126 K respectively. Below is the proposed reaction scheme for the hydrogenation of HCN with their corresponding m/z values

Reaction Scheme 1

Time of exposure a) 0 min b) 20 min c) 1 hr d) 3 hr e) 3 hr with H₂

TPD done at 5 K min⁻¹ ramping rate. Mass selected were 27, 28, 29, 30 and 31

Temperature-programmed desorption curves of *m/z 27 of hydrogen* cyanide HCN without exposure to the room-temperature atomic H-beam at 15 K (dotted line), and with exposure during 20 min (dashed line), one hour (dotted-dashed line) and three hours (full line). The warm atomic H₂ beam induces a change in morphology that shifts the desorption maximum to higher temperatures, as shown by the TPD curve obtained after three hours exposure to the H₂ beam with the plasma discharge off (large dashed line).

Temperature-programmed desorption curve at m/z 30 ,31, 28 and 29 of HCN without exposure to the atomic H beam (a) and after 20 min (b), 1 h (c) and 3 h (d) exposure at 15 K; m/z 30 and 31 evidence the formation of methylamine CH₃NH₂ from the hydrogenation of HCN; m/z 28 shows the change in morphology of HCN during the hydrogenation experiment. No contribution from CH₂NH is visible in the m/z 29 curve.

2. Hydrogenation of methanimine CH₂NH

Pure CH_2NH infrared spectrum at 15 K before hydrogenation. The bands at 1010, 1628 and 3377 cm⁻¹ correspond to NH_3 remaining from CH_3NH synthesis, the proposed reaction scheme and the mass spectra of CH_3NH at 115 K

Time of exposure a) 0 min b) 2 hr

TPD done at 5 K min⁻¹ ramping rate. Mass selected were 30 and 31

Temperature-programmed desorption spectra of methanimine CH_2NH after hydrogenation for m/z 30 and m/z 31 at T = 15 K. The TPD spectrum of CH_2NH without hydrogenation is shown in the lower part of the figures for the two masses.

- HCN can be hydrogenated to the fully saturated species CH₃NH₂ at low temperature.
- A possible hydrogenation reaction scheme was proposed in which CH₂NH was the stable intermediate.
- But in the experiment they were not able to observe CH₂NH and only CH₃NH₂ was observed.
- > A separate hydrogenation reaction of CH_2NH also gave CH_3NH_2 .
- This work shows that it is possible to hydrogenate a C=N bond in interstellar conditions

- \succ Collision with D/D⁺ gives more insight into the reaction mechanism.
- HCN on various other surfaces (like H₂O, EtOH ice) can trigger/ catalyze other reactions which can be studied.
- > Presence of UV radiation may change the reactivity significantly.

Thank you all....