

Synthesis of Yellow-Emitting Platinum Nanoclusters by Ligand Etching

Xavier Le Guével, † Vanessa Trouillet, ‡ Christian Spies, § Gregor Jung, § and Marc Schneider*, †

†Pharmaceutical Nanotechnology, Saarland University, Saarbrucken, Germany
‡Institute for Applied Materials, KIT-Campus North, Karlsruhe, Germany
§ Department of Biophysical Chemistry, Saarland University, Saarbrucken, Germany

ASAP

dx.doi.org/10.1021/jp211672t

Indranath Chakraborty 21/04/2012

Introduction

Noble metal nanoclusters exhibit unique properties compared to their homologues on the nanometric scale (size >2 nm) such as fluorescence, chirality, or magnetism.

The strong quantum size effect and the absence of the surface plasmon band leads to interesting molecule-like properties such as strong fluorescence, allowing one to obtain NCs with distinct optical features.

Platinum (another noble metal) particles are already developed for their catalytic activity, but it is only recently that two research groups demonstrated the molecular-like properties of blue-emitting platinum NCs stabilized by a dendrimerand by dimethylformamide.

Here the synthesis of stable platinum NCs (PtGSHs) by ligand etching prcess has done and its optical and spectroscopic investigations were performed

Experimental overview

Optimum temperature is 65°C

(a) Excitation (dashed line) and emission (solid line) spectra of the yellow-emitting NCs PtGSH after subtraction of GSH autofluorescence. (b) PtGSH under UV irradiation ($\lambda = 366$ nm). (c) Absorbance profile of platinum particles (Pt NPs), platinum clusters (PtGSH), and the etching ligand GSH. (d) Microscopy image (TEM) of PtGSH.

Results and Discussion PtGSH Pt-MSA NPs -GSH 2500 Wavenumber (cm-1) 3500 3000 2000 1500 1000

Figure S7. Infrared spectra of PtGSH, Pt-MSA NPs and GSH between 1000 and 3800 cm-1. Results indicate the presence of the carboxyl groups (1720 cm-1) of GSH on PtGSH sample. The broader band at 2520 cm-1 for PtGSH compared to GSH suggests the covalent interaction between the thiol groups of GSH and the surface of the platinum clusters.

Fluorescence emission spectra of PtGSH prepared at different weight ratios Pt:GSH after 6 days of etching process. (λexc. = 460 nm; gain=100).

Fluorescence emission spectra of PtGSH at different etching times upon excitation at $\lambda = 480$ nm (a) and $\lambda = 360$ nm (b). Data show the growth of a yellow-emitting species up to 6 days following by the emergence of a blueemitting species for a long etching process.

Lifetime decay of PtGSH prepared at two different weight ratios: Pt:GSH = 1:4 (black line) and 1:10 (red line). Samples were measured upon an excitation at 470 nm and fluorescence was collected at 585 \pm 25 nm. Lifetime components for PtGSH 1–4: τ 1 = 1.02 ns (85%), τ 2 = 3.4 ns (15%); and for PtGSH 1–10: τ 1 = 1.04 ns (85%), τ 2 = 2.01 (15%).

XPS spectra. (a) Pt 4f7/2 of PtGSH shows two peaks, one peak at 72.4 eV (green curve) and the other at 71.6 eV (pink curve), which are attributed to Pt(I) (90%) and Pt (0) (10%), respectively. (b) S 2p3/2 confirms the presence of platinum bound to sulfur (blue curve) with a peak at 163.3 eV.

Summary and Conclusion

In summary, the synthesis of yellow-emitting platinum NCs by interfacial synthesis has been achieved.

Compared to gold and silver NCs protected by GSH, platinum NCs are produced with slower kinetics of etching without the formation of red-NIR emitting species

These clusters are partially bound to GSH and mainly in the oxidation state I (Pt(I) = 90%)

A longer etching process at high temperature involves the formation of blue emitting species accompanied by the degradation of the yellow emitting species.

Synthesis of Pt@BSA clusters at room temperature by interfacial etching using Pt@GSH nanoparticles

An extension of work by Mr. Balagunu (2007)

UV-Vis spectrum of Pt@BSA clusters at neutral pH

Fluorescence spectrum of Pt@BSA clusters

Pt@BSA cluster at pH 10

IR spectrum

Synthesis of Pt@GSH clusters at room temperature by interfacial etching using Pt@GSH nanoparticles

X.

Images

