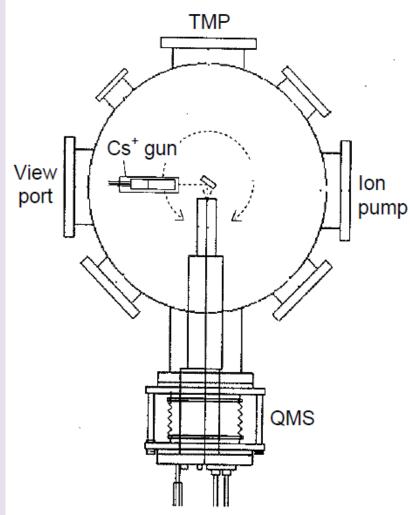
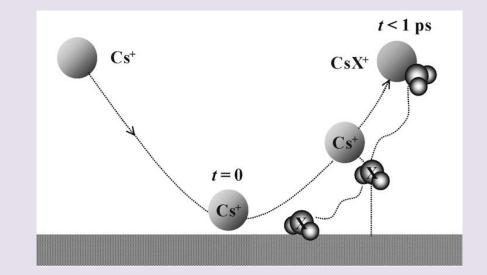

Acidic Water Monolayer on Ruthenium(0001)

Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang

Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

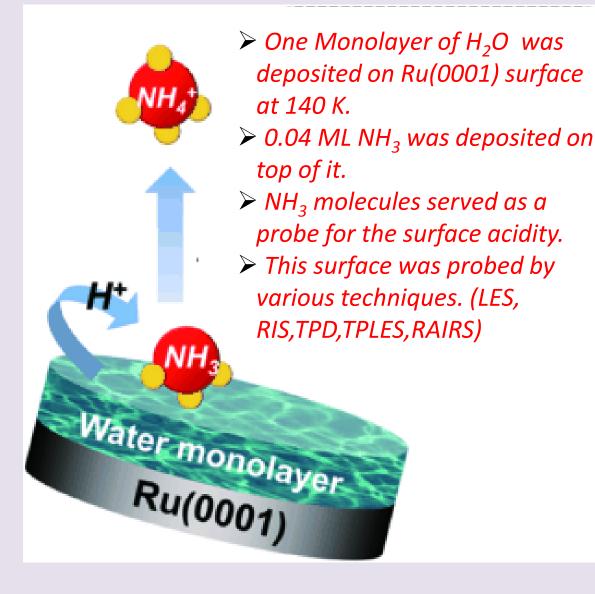




- The omnipresence of water in natural environment makes the interaction of water with solid surfaces as an important field of study.
- One of the most intensively investigated systems for the interaction of water with metal surfaces is water on Ru(0001) and has become a test system for our understanding of this scientific field.
- Different studies have shown that water adsorption on Ru(0001) leads to the formation of an intact molecular water layer on the surface at low temperature (< 155 K) and as the surface is heated, H₂O partially dissociates to form a mixed OH+H₂O+H adsorption layer, in competition with desorption of H₂O.

- \circ On the other hand, D₂O does not dissociate on the surface and desorbs intact due to a kinetic isotope effect.
- But there are still many open questions, in particular concerning the acid– base properties of adsorbed water as these information is fundamentally important to heterogeneous catalysis, corrosion, and electrochemistry as it determines the proton transfer and acid-base characteristics of the watersolid interface.
- In the present work, they studied the proton-transfer ability of water molecules adsorbed on a Ru(0001) surface by using surface spectroscopic measurements and ammonia adsorption experiments.
- The study shows that the first monolayer of water is much more acidic than bulk water, with the ability to spontaneously transfer a proton to an ammonia molecule. 02/13

Experimental Section



H. Kang, Bull. Korean Chem. Soc. 2011, 32, 389–398. H. Kang, Acc. Chem. Res. 2005, 38, 893–900.

Low energy sputtering (LES)- ionic species detection. Reactive-ion scattering (RIS)- neutral species detection. Temperature programmed LES (TPLES) Temperature programmed desorption (TPD) Reflection Absorption IR Spectroscopy (RAIRS)

Results and Discussion

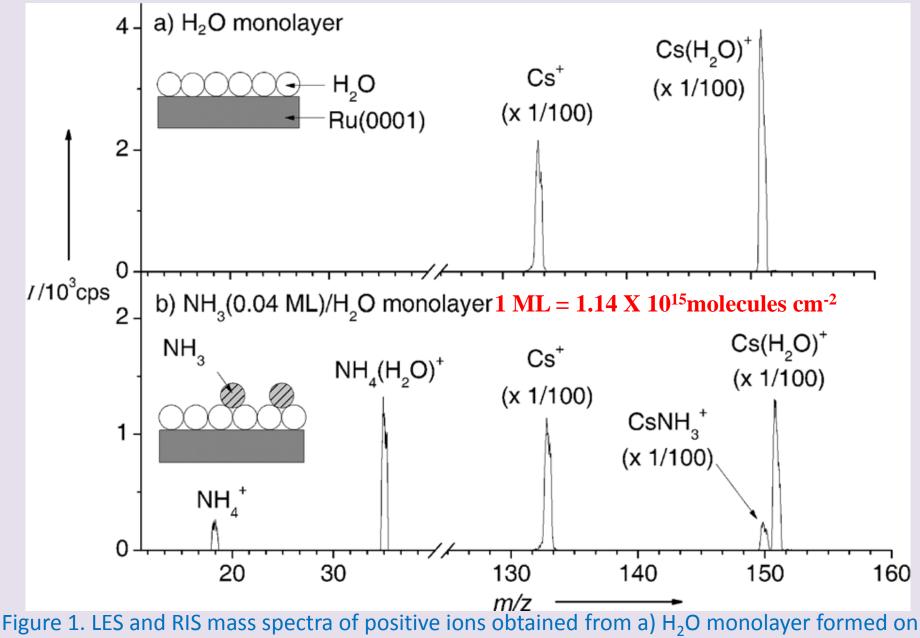
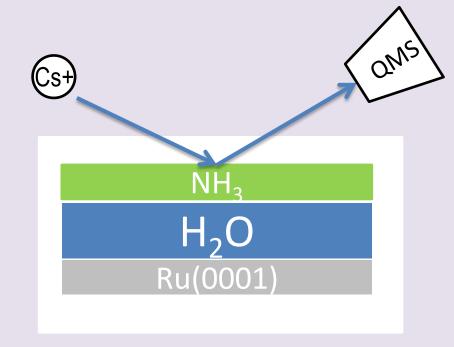



Figure 1. LES and RIS mass spectra of positive ions obtained from a) H₂O monolayer formed of Ru(0001) at 140 K, and b) after NH₃ adsorption (0.04 ML) on surface at 80 K. The LES and RIS measurements were conducted at 80 K with a Cs⁺ beam energy of 25 eV. *Angew. Chem. Int. Ed.* 2012, 51, 12806–12809

For multilayer ice film, NH₄⁺ signal appeared only at a high energy (>35 eV) and with a very weak intensity, as a result of the secondary ionization of neutral NH₃ adsorbates.

 NH₄⁺ and NH₄(H₂O)⁺ signals did not appear when NH₃ was adsorbed onto a multilayer ice film grown on Ru(0001).

The NH₄⁺ signal from the water monolayer exhibited a lower threshold energy (20–25 eV) and stronger intensity than that from the multilayer film, which is characteristic for the low-energy sputtering of preformed NH₄⁺ species.

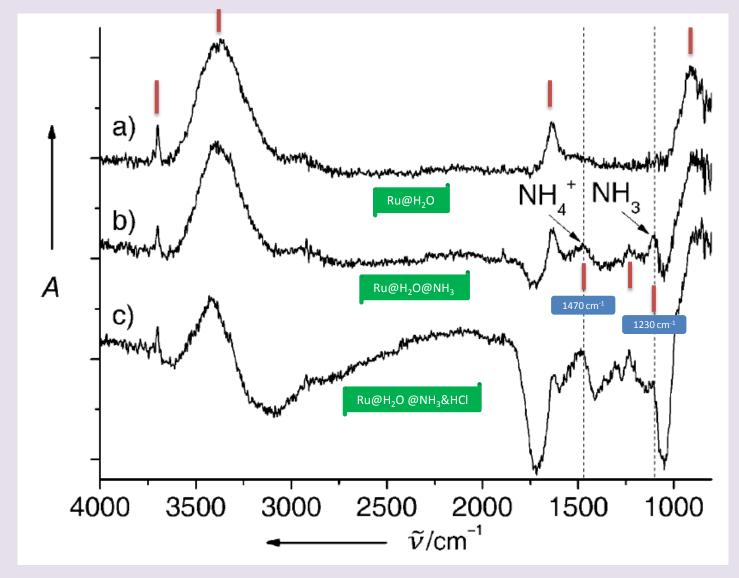
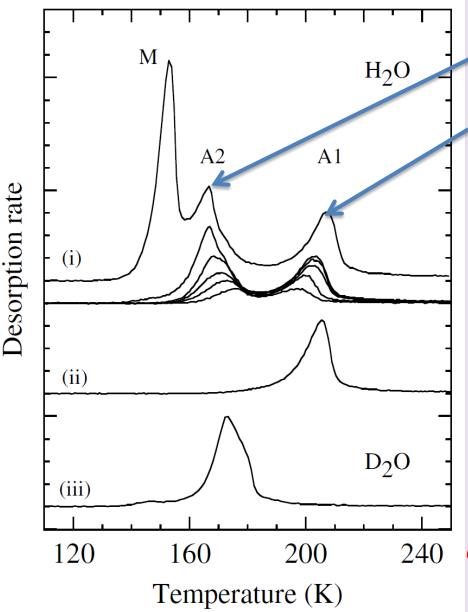



Figure 2. RAIR spectrum of a) H_2O monolayer formed on Ru(0001) at 90 K, and b) after NH_3 adsorption on the H_2O monolayer for coverage of ca. 0.2 ML at 80 K. c) RAIR spectrum obtained after co-deposition of HCl (ca. 0.1 ML) and NH_3 (ca. 0.2 ML) on the H_2O monolayer at 80 K. The amount of NH_3 adsorbate used for the RAIRS experiment was higher than that for the LES and RIS studies, owing to the low sensitivity of RAIRS.

Angew. Chem. Int. Ed. 2012, 51, 12806-12809

07/13

Intact H₂O layer (170 K)

H+OH+H₂O dissociated phase (210 K)

Figure 3. Thermal desorption of water from Ru(0001) taken at a heating rate of 1 K/s. H2O desorption following: (i) dosing at 138 K (1.65 ML, top trace) and at 145K (coverages up to 0.75 ML, lower traces); (ii)H2O adsorbed at 166 K ; (iii) desorption of 0.75 ML D2O dosed at 145 K.

C. Clay et.al. Chem. Phys. Lett. 2004, 388, 89-93.

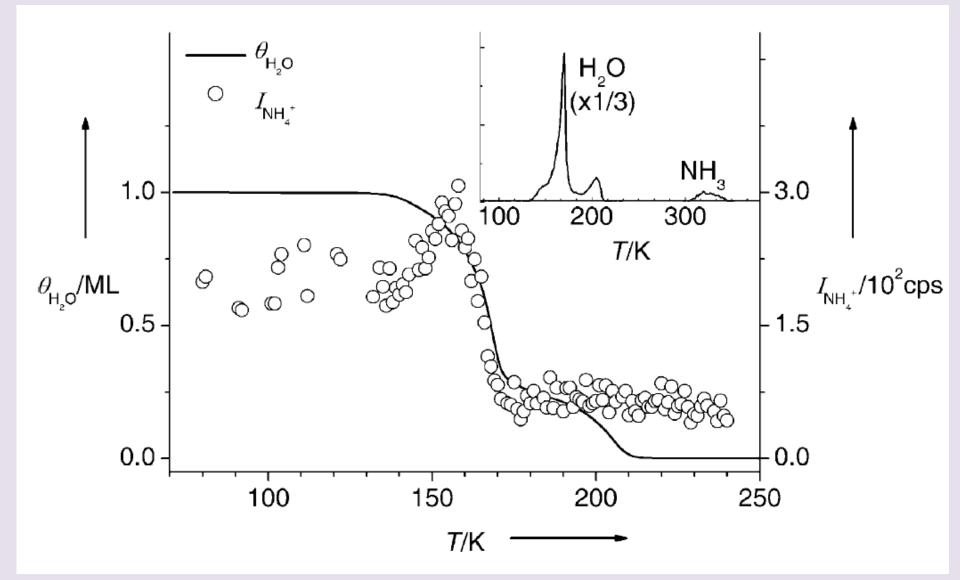
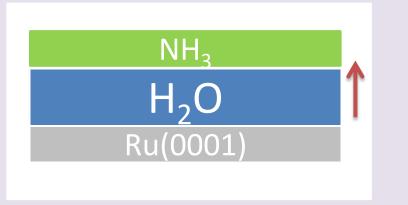



Figure 3. Variation in NH_4^+ signal intensity (*I*) in TPLES experiment, and H_2O coverage (θ) as functions of temperature. The inset shows TPD measurements of H_2O and NH_3 from the sample. An H_2O monolayer was formed at 140 K, and NH_3 was absorbed for a coverage of 0.04 ML at 70 K. The temperature-ramping rate was 1 K s⁻¹ in both the TPD and TPLES experiments.

Angew. Chem. Int. Ed. 2012, 51, 12806-12809

09/13

NH₃ H₂O Ru(0001)

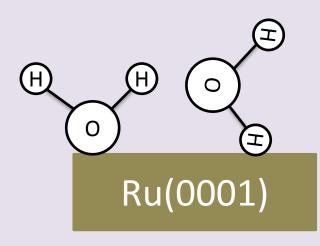
✓ NH_4^+ signal appeared with appreciable intensity from the surface with adsorbed NH_3 and H_2O only when the H_2O coverage exceeded approximately **0.3** ML.

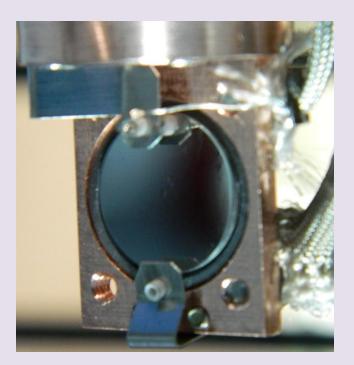
✓ The NH_4^+ signal intensity increased with increasing water coverage up to a monolayer, but then decreased upon the formation of a multilayer.

✓ This shows that water monolayer with a continuous Hydrogen bonded structure is important for the proton transfer to occur, as the NH_4^+ signal appeared only above a certain threshold of water coverage.

✓ This study showed that NH_4^+ population increased with increasing NH_3 coverage, and that $\theta(NH_4^+) = \theta(NH_3)$ was reached at $\theta(NH_3) = 0.02$ ML. That is, approximately half of the NH3 adsorbates were converted to NH_4^+ at this coverage.

✓ For comparison, the protonation equilibrium constant of ammonia in liquid water at room temperature is only 1.8 X 10⁻⁵. A coverage of 0.04 ML NH₃ on water monolayer is numerically equivalent to a bulk concentration of approximately 2M NH₃ in aqueous solution, and this solution would contain a ratio of NH₄⁺:NH₃ in the order of 3 X10³:1. and here it is 1:1 ratio is found.


So the water monolayer has unusually strong acidity compared to bulk water.



- This study demonstrated that the acidity of adsorbed water can be studied using the adsorption of probe molecules and spectroscopic measurements in UHV conditions.
- The first monolayer of water on Ru(0001) is anomalously acidic. The evidence for this statement includes the formation of NH₄⁺ by the proton transfer from water to adsorbed NH₃, which was detected by LES and RAIRS.
- TPLES and TPD experiments showed that protons are released from the water molecules in an intact H₂O monolayer, rather than from the OH,H₂O, and H species in a mixed monolayer.

- This finding is somewhat surprising because it contrasts with the preconception in water surface chemistry that the surface-catalyzed dissociation of water into H and OH may lead to a pathway for hydronium and hydroxide formation.
- This result also suggests that the acidity of water is increased by the formation of an extended H-bond network in the water monolayer.
- The effect of a metal substrate on the electronic structure of adsorbed water may also be important, but this effect alone cannot account for the unique increase in the acidity of an intact water monolayer, which does not occur for a mixed H₂O-OH layer or small water clusters.

Future perspective

- ✤ Reactive ion collision on a single monolayer of ice → H abstraction may be easy.
- H abstraction followed by diffusion can be tried and if this is possible we can make surface acidic.

