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Introduction

Two atomically precise Ag NCs were designed with identical sizes and different surface
microenvironments. Specifically, through the development of an interfacial ligand-exchange (LE)
reaction of aqueous thiolated Ag,s NCs with an aromatic thiol composed of a bulky alkyl group adjacent to
metal binding site, we obtained organic-soluble Ag,; NCs with a well-defined surface microenvironment.
These two model NCs enable us to study the role of local surface hydrophilicity and hydrophobicity in the
eCO,RR. The hydrophobic Ag,; cluster exhibits excellent eCO,RR performance with >90% (O Faradaic
efficiency (FE,) both in H-cell and membrane electrode assembly (MEA) device.

On the other hand, Ag,; cluster with confined hydrophilicity exhibits only 66.6% FE, due to a distinct
interfacial structure of water. Furthermore, the hydrophobic cluster exhibits high eCO,RR activity with a
(Opartial current density (jo) of up to 240 mAcm2 in an MEA device.

Operando surface enhanced infrared absorption spectroscopy reveals the effect of the nature of ligand-
shell on the interfacial structure of water, which plays vital role in the reaction kinetics. Furthermore,
theoretical calculations support the experimental findings and reveal the critical role of confined surface

microenvironment in eCO,RR.



Captopril (Capt)

Captopril, sold under the brand name Capoten among
others, is an angiotensin-converting enzyme (ACE) inhibitor
used for the treatment of hypertension and some types of
congestive heart failure. Captopril was the first oral ACE

inhibitor found for the treatment of hypertension.
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Figure 1 Synthesis and mass-characterization. A) Synthesis scheme of [Ag,s(Capt)g] NCs. B) Comparison of UV-vis absorption spectra of as-
synthesized and purified NCs with that of the [Ag,s(Capt)g] NCs synthesized on a large scale (see inset). The red and blue spectra are vertically
shifted for clarity. C) HR- ESI-MS of as-synthesized [Ag,s(Capt)z] NCs. Insets show the comparison of experimental (Exp.) and calculated (Calc.) mass

spectra of displayed compositions. 6



Ligand exchange reaction at a hydrophilic-hydrophobic interface
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Figure 2 Size-preserved LE synthesis and mass-characterization. A) Biphasic LE synthesis scheme. Photographs show the biphasic separation of
[Ag,s(Capt)g] NCs in water (left) and [Ag,;(IPBT)x] NGCs in DCM (right). B) UV-vis absorption spectra of [Ag,s(Capt)g] NCs and LE product
[Ag,;(IPBT)x] NGs. The red trace is vertically shifted for clarity. Insets show the photographs of respective NC solutions. C) HR-ESI-MS of
[Ag,s(IPBT) ;] NCs synthesized through LE. Inset shows the comparison of Exp. and Calc. mass spectra of [Ag25(IPBT) 8]". 8
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UV-vis absorption spectra of [Ag,s(IPBT);s]~, [Ag,(DMBT),;s]~ and [Ag,:(Capt),s]™

clusters. Insets show the molecular structures of respective thiol ligands.



Analysis of the atomic-level structure obtained from SCXRDdata. A) Total molecular structure of [Ag,s(IPBT) ] NC. B) Ag3 icosahedron core and C)

six equivalent Ag,(IPBT); motifs. D) Formation of the structure of [Ag,;(IPBT)x] by capping the Ag, core with motifs in C. E) Ag,s framework without

thiolates. F) Thiolate-bound Ag, core. G) Ag,s with thiolate-free Agj; core. Carbon and hydrogen atoms of IPBT ligand are omitted in (C-G) for clarity.
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Full-range operando ATR-SEIRAS spectra on (A) [Ag,s(IPBT) x|~ and (B) [Ag,s(Capt)g]~ clusters during eCO,RR.

ATR-SEIRAS stands for attenuated total reflectance surface-enhanced infrared absorption spectroscopy. It is a
surface-sensitive technique similar to surface-enhanced Raman spectroscopy (SERS).

ATR-SEIRAS uses a silicon prism with one surface coated with a thin (~30 nm) metal film. Infrared light passes
through the prism and is totally internally reflected. The evanescent wave excites surface plasmon polaritons at
the metal/ air interface.

The increased electric field is confined to the interface, so absorption probabilities of surface molecules

increase by an order of magnitude or more! >
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Conclusion

« We present the design and large-scale synthesis of two atomically precise Ag,s NCs protected
with thiolate ligands that create different local microenvironments, one with hydrophobicity and
the other with hydrophilicity.

e Specifically, the hydrophobic Ag,s; cluster exhibits remarkable selectivity for CO (>90%) and
achieves a high current density of up to —240 m A cm 2 with excellent durability lasting for more
than 120 h.

* Operando ATR-SEIRAS and theoretical calculations are utilized to gain atomistic insights into the
crucialrole ofthe ligand type in CO, electroreduction.

 The superior performance of the hydrophobic Ag,s cluster underscores the importance of its
tailored surface microenvironment in enhancing intrinsic CO, reduction activity by decreasing
the interaction with the water molecules. These results have valuable implications for the
development of efficient and selective catalysts for CO, conversion, contributing to the

advancement of sustainable energy technologies.
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