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Efficient FRET necessitates fulfilling the following conditions:
1. Overlap between the emission spectrum of the donor and the excitation (or absorption) spectrum of the acceptor.
2. Small intermolecular distance between donor and acceptor.

3. Favorable mutual orientation of their transition dipoles.
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Background @ @ @

Luminescent metal nanoclusters: Biosensing strategies and
bioimaging applications
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Motivation @ @ @

The overlapping of emission spectrum of one system on the excitation spectrum of the other.
The lack of proper nanocluster systems which show FRET mechanisms where both the donor and accepter is
the nanocluster.

Find a suitable FRET mechanism in nanoparticle systems.



Why this paper? @ @ @

1. First paper (to the best of my knowledge) to show FRET involving nanoclusters as both donor and acceptor.

2. Detailed experimental and computational studies to understand the mechanism of FRET in nanocluster systems.



Introduction @ @ @

1. Forster/fluorescence resonance energy transfer, a non-radiative energy transfer process, occurs through long-
range dipole—dipole interactions between a donor—acceptor pair.

2. Over the past few decades, due to their ability to unravel fluorescence interactions between donor and acceptor
with nanometer resolution, FRET-based sensors or imaging agents have found widespread applications in bio-
related fields.

3. Rationally developing an atomically precise cluster-based donor—acceptor system with FRET performance allows

for an in-depth understanding of the intercluster energy transfer mechanism.
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Photophysical property @ @ @
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Photophysical property @ @ @
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Photophysical property @ @ @
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1. Physical mixing.

2. Co-crystallization.
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Computational studies @ @ @

Fermi’s golden rule describes the rate at which atomic or electronic transitions take place between two

states.

2T
Kerer = - (Vep)? FCWD

FCWD - Franck-Condon factor weighted density of states.

V., — Electronic coupling strength.

The Franck-Condon factor weighted density of states provides a detailed picture of

how electronic transitions occur between vibrational states in different electronic

levels.
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Computational studies @ @ @
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Computational studies @ @ @
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Computational studies
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Conclusions

They have developed a spatial confinement system, i.e., the forced co-crystallized Cug and Cuy, clusters, for rationally
realizing the FRET in atomically precise metal nanoclusters.

In addition to the experimental efforts, theoretical calculations were performed to verify the FRET between the Cug
donor and the Cu,, acceptor in terms of the spectra overlap, the confined space, and the dipole orientation.

Overall, the spatial confinement of the co-crystallized Cug@Cu,, cluster system presented here is of significance

because it provides an ideal platform to investigate the FRET mechanism in nanomaterials.



Pros Cons

Provides deeper understanding of FRET in 1. Did not mention any specific application for this
clusters. system.

Opens up new avenues for the use of clusters as 2. The mechanism did not have a proper
FRET sensors for biological applications. experimental support for the theoretical study.

One man’s trash is another man’s treasure!

thank youl!
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