Paper Presentation

Dated: March 9, 2024

Harshita Nagar

pubs.acs.org/JACS Communication

Chiral Hydride Cu₁₈ Clusters Transform to Superatomic Cu₁₅Ag₄ Clusters: Circularly Polarized Luminescence Lighting

Miao-Miao Zhang, Kai-Kai Gao, Xi-Yan Dong, Yubing Si, Teng Jia, Zhen Han,* Shuang-Quan Zang,* and Thomas C. W. Mak

Cite This: J. Am. Chem. Soc. 2023, 145, 22310-22316

October 3, 2023

Authors Affiliation:-

Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Centre, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China

Why this paper?

- ➤ The modulation of metal cluster enantiomers and their reconstruction remain challenging. Here, for the first time, they report an enantiomeric pair of hydride copper cluster made using chiral ligand.
- ➤ The introduction of foreign metal atoms to induce structural conversion of a parent metal cluster has emerged as a promising strategy for modulating the cluster's size and electronic structure.
- ➤ This approach can trigger the formation of bimetallic clusters with desired composition, novel structure, and tailored functionality.

Background work

Reconstructing the Surface of Gold Nanoclusters by Cadmium Doping

Qi Li,[†] Kelly J. Lambright,[‡] Michael G. Taylor, Kristin Kirschbaum,[‡] Tian-Yi Luo, Giannis Mpourmpakis, Soumitra Mokashi-Punekar, Nathaniel L. Rosi, and Rongchao Jin*, and Rongchao Jin*, Soumitra Mokashi-Punekar, Nathaniel L. Rosi, Soumitra Mokashi-Punekar, Nathaniel L. Rosi, Soumitra Mokashi-Punekar, Nathaniel L. Rosi, Nathaniel

Communications

International Edition: DOI: 10.1002/anie.201600267

DOI: 10.1002/ange.201600267

Metal Nanoclusters

Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Ouantum Yield

Giada Soldan⁺, Maha A. Aljuhani⁺, Megalamane S. Bootharaju, Lina G. AbdulHalim, Manas R. Parida, Abdul-Hamid Emwas, Omar F. Mohammed,* and Osman M. Bakr*

Communication

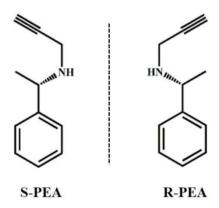
pubs.acs.org/JACS

Hydride-Mediated Controlled Growth of a Bimetallic (Pd@Au₈)²⁺ Superatom to a Hydride-Doped (HPd@Au₁₀)³⁺ Superatom

Shinjiro Takano, † Haru Hirai, † Satoru Muramatsu, † and Tatsuya Tsukuda*, † †

[‡]Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan

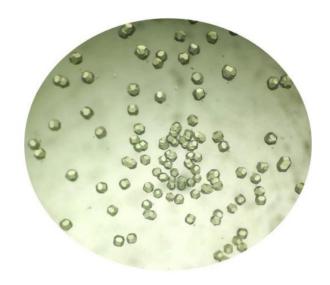
Article


[Pt₂Cu₃₄(PET)₂₂Cl₄]²⁻: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt-Pt Bond

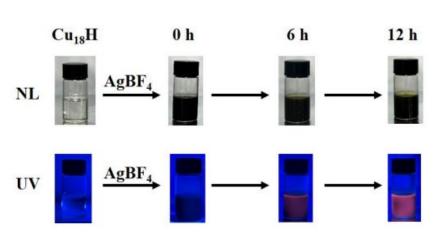
Sanghwa Lee, ¹ Megalamane S. Bootharaju, ¹ Guocheng Deng, ¹ Sami Malola, Hannu Häkkinen, *Nanfeng Zheng, * and Taeghwan Hyeon *

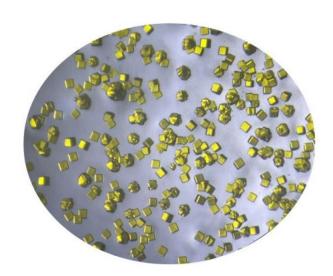
[†]Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

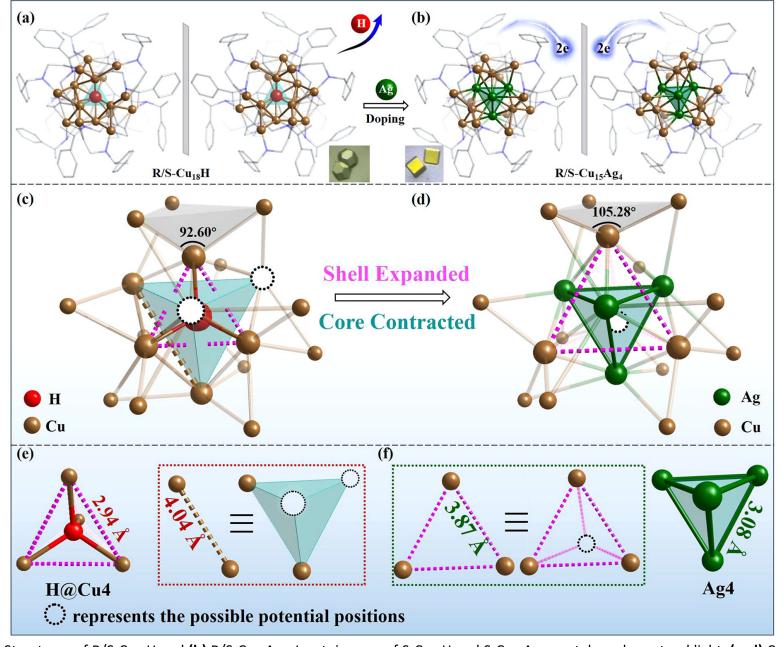
Introduction


- Herein, for the first time, they have synthesized a pair of chiral copper hydride clusters $[Cu_{18}H(R/S-PEA)_{12}](BF_4)_5$ (R/S-Cu₁₈H).
- When treated with Ag⁺ ions, the R/S-Cu₁₈H precursor generates a novel enantiomeric pair of clusters $[Cu_{15}Ag_4(R/S-PEA)_{12}](BF_4)_5$ (R/S-Cu₁₅Ag₄) that lacks a hydride component and exhibits a $Cu_{15}Ag_4$ metal core.
- ➤ Moreover, R/S-Cu₁₈H exhibits circular dichroism (CD) responses, yet is non-emissive but by manipulation of R/S-Cu₁₈H with Ag⁺ ions, R/S-Cu₁₅Ag₄ shows orange emission and CPL activities.
- ➤ Ligand- ((R/S)-1-phenylethyl)prop-2-yn-1-amine

Results and Discussion


 \triangleright Synthesis of $[Cu_{18}H(R/S-PEA)_{12}](BF_4)_5$ (R/S-Cu₁₈H)


$$[Cu(MeCN)_4]BF_4 + R/S-PEA + NaBH_4$$


Figure 1. (a) Image of single crystals of S-Cu₁₈H under natural light

 \triangleright Synthesis of $[Cu_{15}Ag_4(R/S-PEA)_{12}](BF_4)_5$ (R/S-Cu₁₅Ag₄)

Figure 1. (b) Image of single crystals of S-Cu₁₅Ag₄ under natural light

Figure 2. (a) Structures of R/S-Cu₁₈H and **(b)** R/S-Cu₁₅Ag₄. Inset: images of S-Cu₁₈H and S-Cu₁₅Ag₄ crystals under natural light. **(c, d)** Comparison of changes in S-Cu₁₈H and S-Cu₁₅Ag₄. Bond lengths in **(e)** S-Cu₁₈H and **(f)** S-Cu₁₅Ag₄. Inset: The disordered parts in S-Cu₁₈H and S-Cu₁₅Ag₄ structures. In S-Cu₁₈H, two of the four positions are occupied by copper and show no difference. In S-Cu₁₅Ag₄, three of the four positions are occupied by copper and show no difference. Color codes: N, blue; C, gray. H atoms of ligands are omitted for clarity.

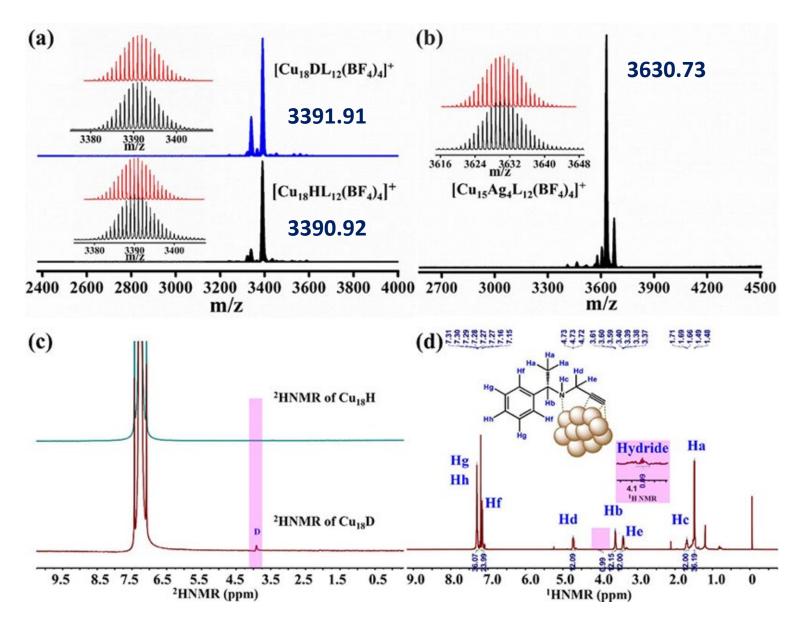
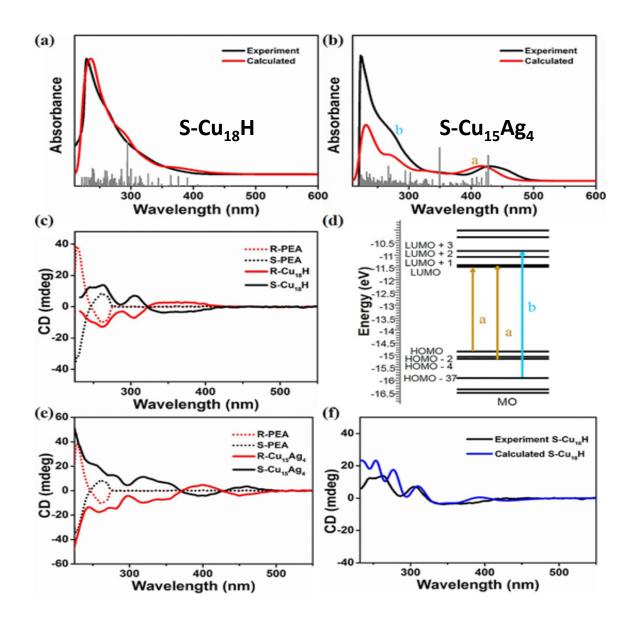
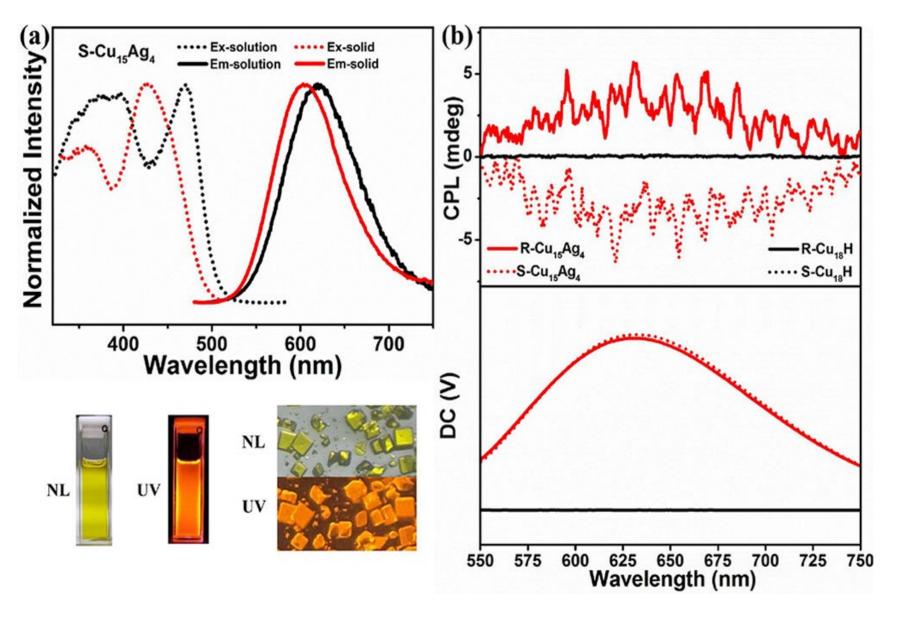




Figure 3. ESI-MS spectra of (a) S-Cu₁₈H, deuteride derivative, and (b) S-Cu₁₅Ag₄. Inset: The measured (black trace) and simulated (red trace) isotopic patterns of molecular ion peaks. (c) 2 H NMR spectra of S-Cu₁₈H and the deuterated cluster in CHCl₃. (d) 1 H NMR spectrum of S-Cu₁₈H in CDCl₃

Figure 4. Experimental and calculated absorption spectra of (a) S-Cu₁₈H and (b) S-Cu₁₅Ag₄ (c,e) CD spectra of R/S-Cu₁₈H, R/S-Cu₁₅Ag₄, and ligands in dichloromethane. (d) Energy alignment of the MOs of S-Cu₁₅Ag₄. (f) Experimental and calculated CD spectra of S-Cu₁₈H.

Figure 5. (a) Luminescence spectra of S-Cu₁₅Ag₄ in solid and solution states. Inset: Images of S-Cu₁₅Ag₄ crystals and solution under natural light (NL) and UV irradiation. **(b)** CPL spectra of R/S-Cu₁₅Ag₄ and R/S-Cu₁₈H crystals.

Conclusion

- \blacktriangleright They have reported, for the first time, the synthesis and characterization of a pair of enantiomeric Cu hydride cluster R/S-Cu₁₈H.
- ➤ Through manipulation of R/S-Cu₁₈H by Ag⁺ ions, hydride is released, leading to the formation of a novel superatom, R/S- Cu₁₅Ag₄.
- ➤ The solid state R/S-Cu₁₅Ag₄ exhibited a photoluminescence quantum yield of 7.02% and excellent circularly polarized luminescence.
- ➤ The site-specific metal replacement in the cluster molecule and the accompanying dramatic changes in optical properties elucidate the explicit correlation between structure and luminescence.