Three-atom-wide gold quantum rods with periodic elongation and strongly polarized excitons

Lianshun Luo^{a,1}, Zhongyu Liu^{a,1}, Jie Kong^{b,1}, Christopher G. Gianopoulos^c, Isabelle Coburn^a, Kristin Kirschbaum^c, Meng Zhou^{b,2}, and Rongchao Jin^{a,2}

Edited by Catherine Murphy, University of Illinois at Urbana-Champaign, Urbana, IL; received October 23, 2023; accepted January 22, 2024

¹Department of Chemistry, Carnegie Mellon University, Pittsburgh PA 15213, USA.

²Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

³Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, USA. Publication date: 22nd January 2024

Paper Presentation

Sooraj B S 23-03-2024

Motivation

- While this plasmon-to-exciton transition has been clear in spherical particles, it remains unclear in non-spherical (or anisotropic) cases such as rods
- In early theory, plasmon-like features in Au and Ag quantum rods (QRs) were predicted but there has been no experimental success yet
- ightharpoonup They have experimentally attained a periodic series of gold QRs (Au₄₂ to Au₁₁₄ protected by the same thiolate), which exhibit unusual optical properties and shed light on the theoretical prediction more than a decade ago

Background Work

Materials Horizons

FOCUS

View Article Online
View Journal | View Issue

Cite this: *Mater. Horiz.*, 2022, 9, 25

Plasmons: untangling the classical, experimental, and quantum mechanical definitions

Rebecca L. M. Gieseking (1)

Article

pubs.acs.org/JPCC

Diameter Dependence of the Excitation Spectra of Silver and Gold Nanorods

Emilie B. Guidez and Christine M. Aikens*

pubs.acs.org/JACS

Communication

Near-Infrared Dual Emission from the Au₄₂(SR)₃₂ Nanocluster and Tailoring of Intersystem Crossing

Lianshun Luo, Zhongyu Liu, Xiangsha Du, and Rongchao Jin*

Introduction

- ightharpoonup A periodic series of atomically precise gold quantum rods is reported Au_{42} , Au_{60} , Au_{78} , Au_{96} , Au_{114}
- ➤ These QRs possess hexagonal close-packed kernels with a constant threeatom diameter but increasing aspect ratios (ARs) from 6.3 to 18.7
- The kernels of the QRs are in a Au_1 – $(Au_3)_n$ – Au_1 configuration (where n is the number of Au_3 layers) and follow a periodic elongation with a uniform $Au_{18}(SR)_{12}$ increment consisting of four Au_3 layers
- ➤ These Au QRs possess distinct HOMO—LUMO gaps (Eg = 0.6 to 1.3 eV) and exhibit strongly polarized excitonic transition along the longitudinal direction, resulting in very intense absorption in the near-infrared (800 to 1,700 nm)

Figure S1. Illustration of the synthesis procedure for Au quantum rods (Au QRs).

6

Fig. 2. (*A*) Illustration of the structural evolution from Au_{42} to Au_{60} . (*B*) Twelve $Au(PET)_2$ motifs wrapping the Au_{32} kernel of Au_{60} along the *C*3 axis. (*C*) Structure schematic of Au_{42} , Au_{60} , Au_{78} , Au_{96} , and Au_{114} with kernel length ranging from 19.76 to 58.79 Å. Color code: yellow = S, other colors = Au, carbon tails are omitted for clarity.

Fig. 3. (*A*) Optical absorption spectra of Au QRs. (*B*) Fitting of optical gaps by the Schrödinger equation for the 1D particle in a box; *L*: the length of Au QRs, *n*: the energy level, *m*: electron mass.

Fig. 5. (A) Kohn–Sham orbital energy level diagrams of Au_{42} , Au_{60} , Au_{78} , Au_{96} , and Au_{114} . (*B*) The HOMO-LUMO gap vs. the AR. (C) Variation of longitudinal extinction peak for simulated Au nanorods (diameter = 10 nm, ARs from 2 to 20) (28) and ultrasmall Au QRs as the AR increases. (D) Variation of extinction coefficient for Au nanorods and ultrasmall Au QRs as the AR increases. (E) The ns-TA kinetics at 400 nm excitation and corresponding fits of Au_{42} , Au_{60} , Au_{78} , Au_{96} , and Au_{114} . (F) The Eg gap dependent excited state lifetimes of Au_{42} , Au_{60} , Au_{78} , Au_{96} , and Au₁₁₄.

 Au_{42} , Sr = 0.73, D = 0.011 Å

 Au_{60} , Sr = 0.76, D = 0.003 Å

 Au_{78} , Sr = 0.78, D = 0.19 Å

 Au_{96} , Sr = 0.80, D = 0.15 Å

Figure S19. Distribution of the Chole (color: lime) and Celectron (color: cyan, largely overlapped) during the S₀→S₁ excitation in (A) Au₄₂, (B) Au₆₀, (C) Au₇₈, and (D) Au₉₆ QRs. The Chole and Celectron diagram describes the overall trend distribution of hole and electron by Gaussian functions, erasing the distribution details.

- Strong transition dipole moment is a prerequisite to display plasmonic behavior
- Oscillator strength increases with AR

Plasmonic behaviour	Excitonic behaviour
With higher AR, oscillator strength increases	➤ Larger HOMO-LUMO gap, 0.6 — 1.33 eV
Linear relation of AR with extinction coefficient	Higher exciton lifetime, 10 -2122 ns
Higher order of NIR extinction coefficient	Fluence independent electron dynamics

Conclusion

- ➤ This work reports a periodic series of atomically precise gold quantum rods with unusual excitonic properties
- ➤ This work demonstrates that single-electron transition in Au QRs (Eg = 0.6 to 1.33 eV) may exhibit plasmon-like behavior, manifested by the strongly polarized longitudinal component due to the rod shape, the intense NIR peak, and its linear scaling relations with the AR
- ➤ Their excited states exhibit long lifetimes (10 to 2,122 ns), significantly longer than that of the classical plasmons (i.e., hundreds of femtoseconds)
- ➤ The long lifetimes of carriers renders the QRs quite promising in applications, such as solar cells and NIR photocatalysis