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» While this plasmon-to-exciton transition has been clear in spherical particles,
it remains unclear in non-spherical (or anisotropic) cases such as rods

» In early theory, plasmon-like features in Au and Ag quantum rods (QRs) were
predicted but there has been no experimental success yet

» They have experimentally attained a periodic series of gold QRs (Au,, to Au;,,
protected by the same thiolate), which exhibit unusual optical properties and
shed light on the theoretical prediction more than a decade ago
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Introduction

> A periodic series of atomically precise gold quantum rods is reported Au,,,
Augg, Auzg, Augg, AUy,

» These QRs possess hexagonal close-packed kernels with a constant three-
atom diameter but increasing aspect ratios (ARs) from 6.3 to 18.7

» The kernels of the QRs are in a Au;—(Au;),—Au, configuration (where n is the
number of Au, layers) and follow a periodic elongation with a uniform
Au,¢(SR),, increment consisting of four Au, layers

» These Au QRs possess distinct HOMO-LUMO gaps (Eg = 0.6 to 1.3 eV) and
exhibit strongly polarized excitonic transition along the longitudinal

direction, resulting in very intense absorption in the near-infrared (800 to
1,700 nm)
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Figure S1. Illustration of the synthesis procedure for Au quantum rods (Au QRs).
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Fig. 2. (A) lllustration of the structural evolution from Au,, to Aug,. (B) Twelve Au(PET), motifs
wrapping the Aus, kernel of Au,along the C3 axis. (C) Structure schematic of Au,,, Aug,, Au,g, Aug,
and Au,,, with kernel length ranging from 19.76 to 58.79 A. Color code: yellow =S, other colors =

Au, carbon tails are omitted for clarity. .
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Fig. 3. (A) Optical absorption spectra of Au QRs. (B) Fitting of optical gaps by the Schrédinger equation
for the 1D particle in a box; L: the length of Au QRs, n: the energy level, m: electron mass.
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Fig. 5. (A) Kohn—Sham
orbital energy level
diagrams of Au,,, Aug,,
Aug, Auge, and Auy,,. (B)
The HOMO-LUMO gap vs.
the AR. (C) Variation of
longitudinal extinction peak
for simulated Au nanorods
(diameter =10 nm, ARs
from 2 to 20) (28) and
ultrasmall Au QRs as the AR
increases. (D) Variation of
extinction coefficient for Au
nanorods and ultrasmall Au
QRs as the AR increases. (E)
The ns-TA kinetics at 400
nm excitation and
corresponding fits of Au,,,
Aug,, Auog, Augg, and Au,q,.
(F) The Eg gap dependent
excited state lifetimes of
Au,,, Aug,, Au,g, Augg, and
AUy,
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Uy, Sr=0.80, D =0.15 A

Figure S19. Distribution of the
Cioe(color: lime) and Ceiccron
(color: cyan, largely overlapped)
during the So— S, excitation in
(A) AU,42, (B) Alléo, (C) AU,78, and
(D) AussQRs. The Cioe and Cercetron
diagram describes the overall
trend distribution of hole and
electron by Gaussian functions,
erasing the distribution details.

» Strong transition dipole
moment is a prerequisite to
display plasmonic behavior

» Oscillator strength increases
with AR
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Plasmonic behaviour

» With higher AR, oscillator
strength increases

Excitonic behaviour

Larger HOMO-LUMO gap, 0.6 —
1.33 eV

> Linear relation of AR with
extinction coefficient

Higher exciton lifetime, 10 -
2122 ns

» Higher order of NIR extinction
coefficient

Fluence independent electron
dynamics

13



Conclusion

» This work reports a periodic series of atomically precise gold quantum rods with
unusual excitonic properties

» This work demonstrates that single-electron transition in Au QRs (Eg = 0.6 to
1.33 eV) may exhibit plasmon-like behavior, manifested by the strongly
polarized longitudinal component due to the rod shape, the intense NIR peak,
and its linear scaling relations with the AR

» Their excited states exhibit long lifetimes (10 to 2,122 ns), significantly longer
than that of the classical plasmons (i.e., hundreds of femtoseconds)

» The long lifetimes of carriers renders the QRs quite promising in applications,
such as solar cells and NIR photocatalysis
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