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Why this paper?

* No catalysts are being used here, OH-Radical and e on the air-water interface does the
job

 The degradation happens simply in water.

e Carried out at room temperature.

 The degradation process is very fast (happens in milliseconds)

Relevance to our group:

Water microdroplets
Electrospray ionization and deposition
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Experimental setup

Table S1. LTQ-MS conditions in droplet experiments.

Condition description Values

Temperature for generating droplets by ultrasonic o

S 20~25°C
atomization
Temperature for generating droplets by nebulizing of
water solution with coaxial nebulization gas N, with no 20 ~25°C
voltage
Temperature of MS inlet 200 or 275 °C
Flight distance [ ~ 100 mm
Flight velocity 80 m-s!
Pressure for generating droplets 0.4~ 1.0 MPa
Carrier gas N>
Relative humidity in the reaction region 50% ~ 80%
MS operation model Negative ion mode

Mass range m/z 50-500




Results and Discussion
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Results and Discussion
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Relative abundance (RA) of detected species by an online LTQ XL mass spectrometer for a 250
us microdroplet experiment, a 250 ps microdroplet experiment + 5 hours aqueous phase reaction,
and a 250 ps microdroplet experiment + 24 hours aqueous phase reaction.



Results and Discussion
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Fig. S6.

Relative abundance (RA4) of reactant and intermediates by an online LTQ XL mass spectrometer
in a 250 ps microdroplet experiment with 10* M 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 10-
4 M NaNOs, or 10 M DMPO + 104 M NaNO; under the conditions of 200 °C inlet temperature.



Results and Discussion
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Relative abundance (RA) of reactant and intermediates by a LTQ XL mass spectrometer with and
without H,O, under the conditions of 275 °C 1inlet temperature.



Results and Discussion
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Time evolution of key distances in H,O-" dissociation reaction obtained by ab initio molecular
dynamics simulation.



Results and Discussion
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Surface preference of PFOA. a, Gibbs-free-energy change (AG) profile of a PFOA molecule pulled
into water as a function of distance (d, A) between centers of PFOA and droplet (GDS represents
Gibbs division surface). b, Six most abundant configurations of PFOA adsorption (The dashed
lines represent the hydrogen-bonds between PFOA and water molecules at air-water interfaces).
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Fig. S21.
Calculated capture rate coefficients (k¢c, cm*-s™) of -C,F3,41/C,F2,.1OH (n = 1-7) by -OH and ¢
based on the geometries optimized at the M06-2X/aug-cc-pVTZ level of theory.
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Relative abundance (RA4) of 10 uM 1H,1H,2H,2H-perfluorodecylamine (left) and 2,2,3,3,4.4,4 -
heptafluoro-butanol (right) after microdroplet experiments.
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Relative abundance (RA) of 10 uM perfluorooctanesulfonic acid (PFBS, left) and perfluorobutane
sulfonic acid (PFOS, right) after microdroplet experiments.
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Fig. S25.
Comparison of relative abundance under the conditions of 0 (left) and 4.5 kV (right) external
voltage during the nebulization using Method I1.



Conclusion:

* Spontaneous degradation of PFAS has been carried out in a catalyst-free manner using water microdroplets at the
air-water interface.

* OH radical and electrons at the AWI are the determining factors of the mechanism.
* The process described here is ultrafast (method Il takes only 25 milliseconds to degrade the PFAS)

Thank you for listening!

Persist like PFAS and be reluctant to degradation!
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