14.10.2024

Chemistry Letters, 2024, **53**, upae192 https://doi.org/10.1093/chemle/upae192 Advance access publication 14 October 2024

Letter

Structure determination of tweezer-shaped π -extended tetraphenylenes by microcrystal electron diffraction

Haruki Sugiyama^{1,2,3,}*, Kosuke Watanabe^{1,2}, Chihong Song^{2,4,5}, Kazuyoshi Murata^{2,4}, Yasutomo Segawa^{1,2,*}

¹Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan

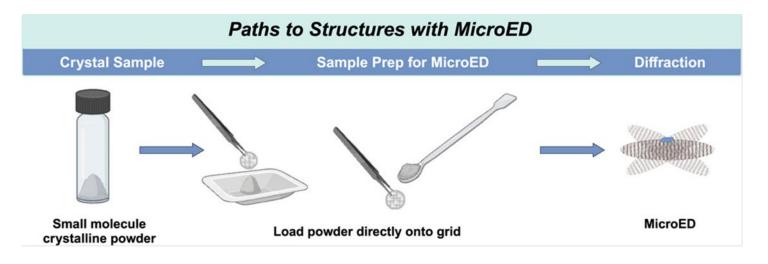
²The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8787, Japan

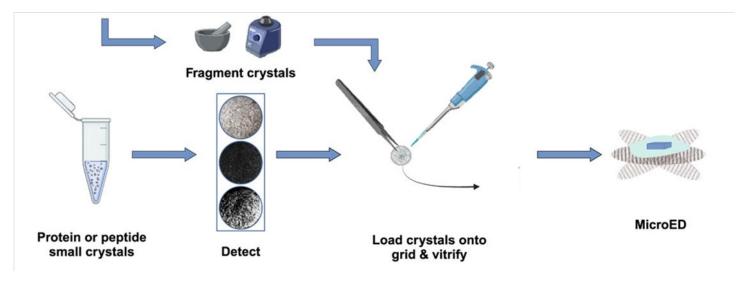
³Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan

⁴Exploratory Research Center on Life and Living Systems, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan

⁵Present address: Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.

^{*}Corresponding authors: Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8787, Japan. Emails: h_sugiyama@cross.or.jp, segawa@ims.ac.jp


Microcrystal electron diffraction (MicroED)



An outline of MicroED data acquisition and processing

- MicroED is a cryo electron microscopy technique used to determine structure of nano and microcrystals.
- Due to strong interaction between electrons and matter, crystals can be as small as few tens of nanometer.

Sample preparation

Why this paper?

- \triangleright Structure determination of large π conjugated molecules using microcrystal electron diffraction.
- Aromatic compounds have several applications owing to their diverse structure-dependent properties.
- \blacktriangleright Understanding their molecular structures and packing patterns is essential. However, π conjugated compounds are sometimes difficult to purify and recrystallize due to their poor solubility.

Background work

2024

http://pubs.acs.org/journal/acscii

Article

Reactive Noble-Gas Compounds Explored by 3D Electron Diffraction: XeF₂-MnF₄ Adducts and a Facile Sample Handling Procedure

Klemen Motaln, Kshitij Gurung, Petr Brázda, Anton Kokalj, Kristian Radan, Mirela Dragomir, Boris Žemva, Lukáš Palatinus,* and Matic Lozinšek*

RESEARCH ARTICLE

2023

www.advancedscience.com

Unraveling the Structure of Meclizine Dihydrochloride with MicroED

Jieye Lin, Johan Unge, and Tamir Gonen*

2023

Open Access
This article is licensed under CC-BY 4.0 © ①

Articles

MicroED as a Powerful Tool for Structure Determination of Macrocyclic Drug Compounds Directly from Their Powder Formulations

Emma Danelius, Guanhong Bu, Lianne H. E. Wieske, and Tamir Gonen*

RESEARCH ARTICLE

2024

www.advanced-bio.com

Polymorphic Structure Determination of the Macrocyclic Drug Paritaprevir by MicroED

Guanhong Bu, Emma Danelius, Lianne H.E. Wieske, and Tamir Gonen*

2020

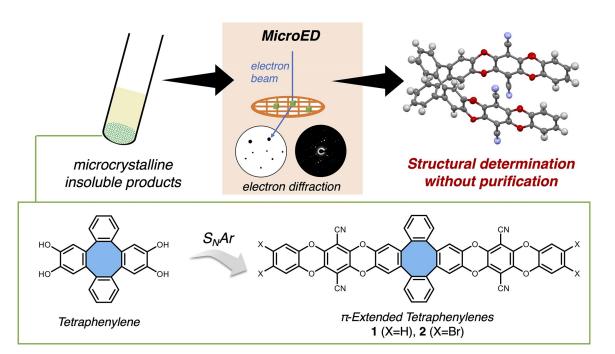
COMMUNICATION

View Article Online
View Journal | View Issue

Cite this: *Chem. Commun.*, 2020, 56, 4204

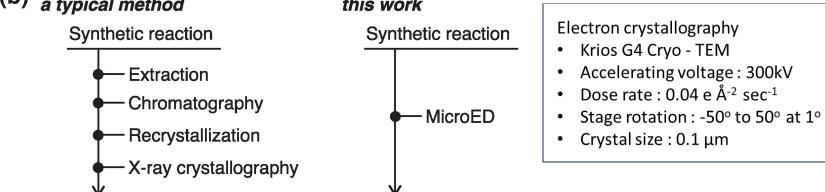
Received 7th January 2020, Accepted 6th March 2020

DOI: 10.1039/d0cc00119h


rsc.li/chemcomm

Crystal structure and orientation of organic semiconductor thin films by microcrystal electron diffraction and grazing-incidence wide-angle X-ray scattering†

Andrew M. Levine, oabc Guanhong Bu, oabc Sankarsan Biswas, oabc Esther H. R. Tsai,* Adam B. Braunschweig oabc and Brent L. Nannenga oabc


Introduction

- > In this work, they determined the structures of tweezer-shaped π- extended tetraphenylenes using MicroED without purification or recrystallization.
- \triangleright Two types of π extended tetraphenylenes 1 and 2 were synthesized via nucleophilic aromatic substitution reactions of tertrahydroxy tetraphenylene 3 with phthalonitrile derivatives 4 and 5, respectively.
- ➤ The study analyzed two variations of these molecules, showing how small differences in their chemical composition affected their 3D structures and packing arrangements.

Results and discussion

Structure determination

Structure determination

Figure 1. a) Structures of tweezer-shaped π - extended tetraphenylenes 1 and 2. b) A typical method for determining the molecular structures of the reaction products and the method used in this work.

Synthesis

HO

OH

$$X$$

OH

 X

Tertrahydroxy tetraphenylene

Phthalonitrile derivatives

Figure 2. Synthesis of 1 and 2.

Synthesis

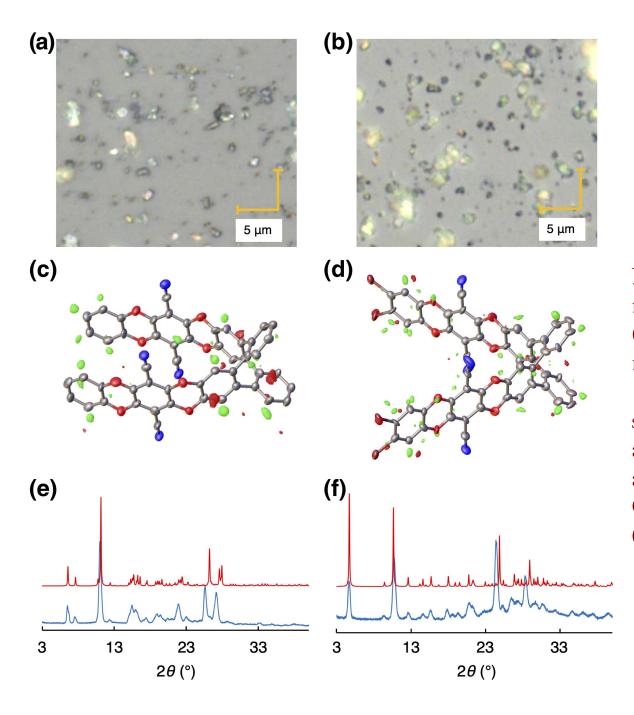
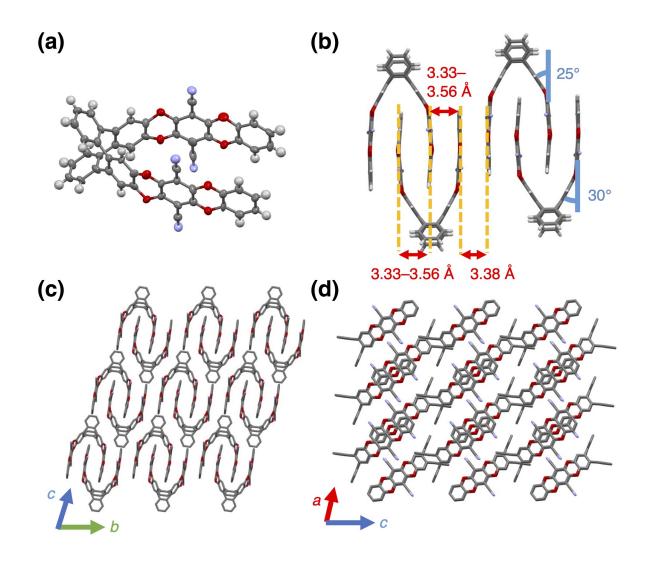
Nucleophilic Aromatic Substitution

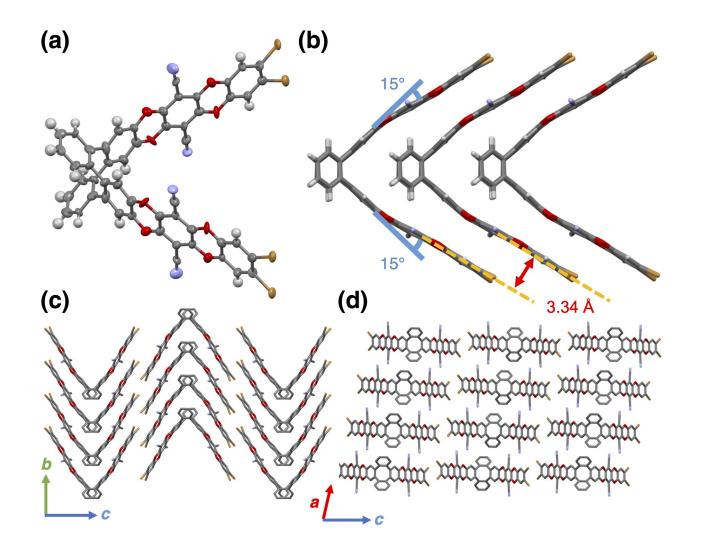
In this reaction, a nucleophile (Nu) attacks an electron-poor aromatic molecule, resulting in the substitution of a leaving group:

$$\begin{array}{c|c}
NO_2 \\
NU \\
NO_2
\end{array}$$

$$\begin{array}{c|c}
NO_2 \\
NU \\
NO_2
\end{array}$$

$$\begin{array}{c|c}
NO_2 \\
NU \\
CI
\end{array}$$


Figure 3. (a) and (b) Optical microscopy images of 1 and 2. (c) and (d) Difference Fourier maps of the crystal structures of 1 and 2, where red and green spheres indicate the missing and excess electron density areas, respectively. (e) and (f) Observed (blue) and calculated (red) PXRD patterns of 1 and 2.

	1	2
Crystal system	Triclinic	Monoclinic
Space group	P-1	C2/c
a (Å)	10.124	17.097
b (Å)	13.766	6.512
c (Å)	14.482	38.68
α	111.1	90
β	91.83	103.72
γ	90.47	90
Number of merged crystals	14	5
R_1	0.217	0.219

Table 1. Crystallographic data and structure refinement details of 1 and 2.

Figure 4. MicroED analysis of the crystal structure of 1. (a) Molecular structure of 1. (b) Intermolecular π - π stacking. (c) and (d) The packing of 1; hydrogen atoms and solvent molecules are omitted for clarity.

Figure 5. MicroED analysis of the crystal structure of 2. (a) Molecular structure of 2. (b) Intermolecular π – π stacking. (c) and (d) The packing of 2; hydrogen atoms and solvent molecules are omitted for clarity.

Conclusion

- \succ This study presented the synthesis of two tetraphenylene derivatives with extended π planes.
- ➤ They reported the molecular structures and crystal packing of Compounds 1 and 2 using MicroED.
- \triangleright Compound 1 has a U-shaped structure, with two flat regions (called π -planes). This stacking creates a layered arrangement in the crystal.
- ➤ Compound 2 has a V-shaped structure, form a zigzag pattern due to their shape and interactions with the bromine atoms.
- This was achieved without requiring purification or crystallization, which are often time consuming and difficult for poorly soluble molecules like these tetraphenylenes.