nature communications

Article

https://doi.org/10.1038/s41467-024-53471-3

Hierarchical assembly of Ag₄₀ nanowheel ranging from building blocks to diverse superstructure regulation

Received: 17 May 2024

Accepted: 9 October 2024

Xue-Jing Zhai¹, Meng-Yu Luo¹, Xi-Ming Luo ¹□, Xi-Yan Dong ¹□, Yubing Si ¹, Chong Zhang¹, Zhen Han¹, Runping Han¹, Shuang-Quan Zang ¹□ & Thomas C. W. Mak ^{1,3}

Published online: 23 October 2024

Authors and Affiliations

College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China

Xue-Jing Zhai, Meng-Yu Luo, Xi-Ming Luo, Xi-Yan Dong, Yubing Si, Chong Zhang, Zhen Han, Runping Han, Shuang-Quan Zang & Thomas C. W. Mak

Xi-Yan Dong

Samapti Mondal 23.11.2024

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China

Thomas C. W. Mak

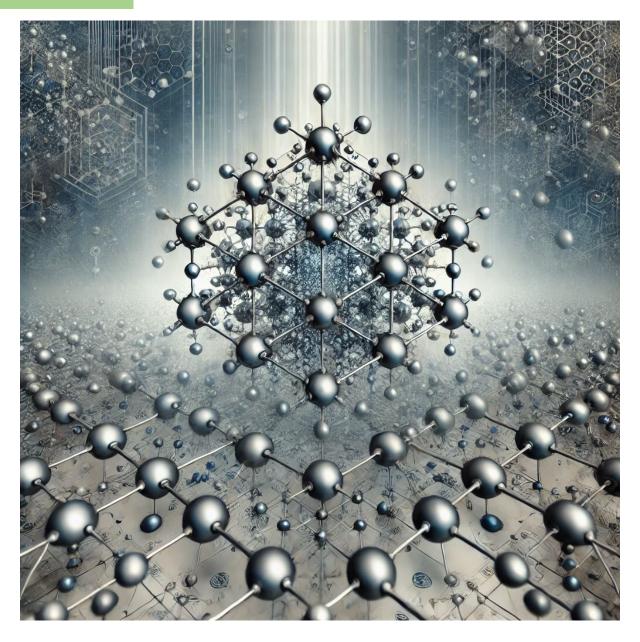
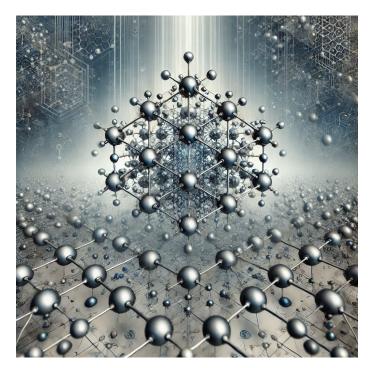
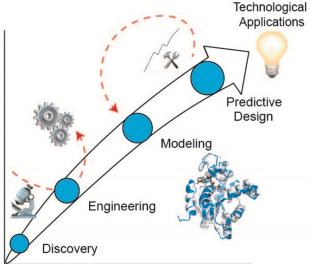



Image source: ChatGPT

Chemical Reviews > Vol 118/Issue 24 > Article

Subscribed



REVIEW | October 3, 2018

Biomolecular Assemblies: Moving from Observation to Predictive Design

Corey J. Wilson, Andreas S. Bommarius, Julie A. Champion, Yury O. Chernoff, David G. Lynn, Anant K. Paravastu, Chen Liang, Ming-Chien Hsieh, and Jennifer M. Heemstra*

Material Synthesis via Particle Assembly

material cylinders that article recomment		
Current: Manipulation of Nanoscale Structure	Next Generation Challenges	
• • • • • •	Enlargement	Fabrication
•		
	Integration	Transformation
	×	

Journal of the American Chemical Society > Vol 144/Issue 8 > Article

Subscribed

PERSPECTIVE | February 16, 2022

Nanoparticle Assembly as a Materials Development Tool

Margaret S. Lee, Daryl W. Yee, Matthew Ye, and Robert J. Macfarlane*

Double-helical assembly of heterodimeric nanoclusters into supercrystals

<u>Yingwei Li, Meng Zhou, Yongbo Song, Tatsuya Higaki, He Wang & Rongchao Jin</u>

Nature **594**, 380–384 (2021) Cite this article

Nanoscale Horizons

COMMUNICATION

View Article Online
View Journal | View Issue

Cite this: Nanoscale Horiz., 2021, 6, 913

Received 21st June 2021, Accepted 19th August 2021 A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag₇₀ nanocluster crystal†

Tao Chen,^a Sha Yang,^b Qinzhen Li,^a Yongbo Song,^c Guang Li, ^b* Jinsong Chai*^c and Manzhou Zhu ^b* *

Journal of the American Chemical Society → Vol 144/Issue 50 → Article

Subscribed

Cite Share Jump to

ARTICLE | December 9, 2022

Triple-Helical Self-Assembly of Atomically Precise Nanoclusters

Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics

Qiaofeng Yao, Lingmei Liu, Sami Malola, Meng Ge, Hongyi Xu, Zhennan Wu, Tiankai Chen, Yitao Cao,

María Francisca Matus, Antti Pihlajamäki, Yu Han [™], Hannu Häkkinen [™] & Jianping Xie [™]

Nature Chemistry 15, 230–239 (2023) Cite this article

Inorganic Chemistry → Vol 60/Issue 12 → Article

Subscribed

ARTICLE | June 3, 2021

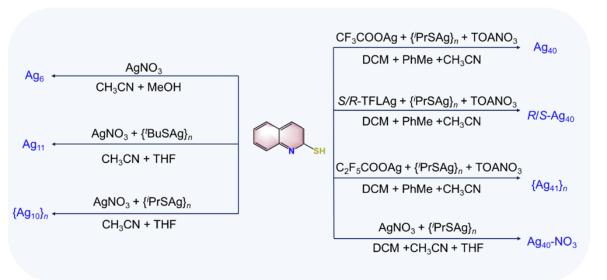
[Cu{SC(O)O'Pr}]₉₆: A Giant Self-Assembled Copper(I) Supramolecular Wheel Exhibiting Photoluminescence Tuning and Correlations with Dynamic Solvation and Solventless Synthesis

Arvind K. Gupta, Pilli V. V. N. Kishore, Jhih-Yu Cyue, Jian-Hong Liao, Welni Duminy, Werner E. van Zyl*, and C. W. Liu*

Journal of the American Chemical Society > Vol 146/Issue 1 > Article

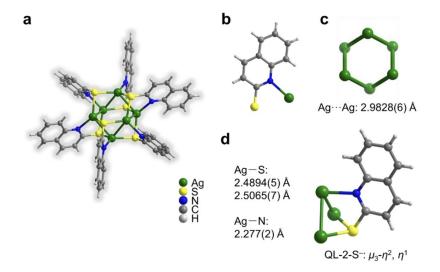
Cite Share Jump to

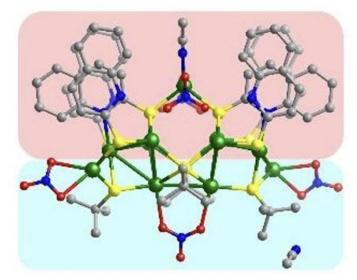
Jump to


ARTICLE | December 28, 2023

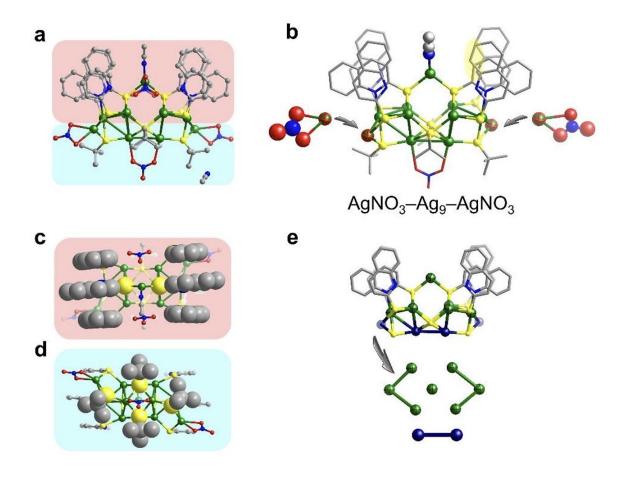
Evolution of Polynuclear Gold(I) Sulfido Complexes from Clusters and Cages to Macrocycles

Liang-Liang Yan, and Vivian Wing-Wah Yam*


Why this paper?


- Reveals a detailed understanding of the construction of hierarchical crystalline superstructures of large-sized metal NCs from a small building block nanocluster (NC)
- The significance of metal salts, and peripheral ligands of NCs on the transformation of Ag
 nanowheel to complex triple and double helical superstructures and 1D chains
- Specific biomolecule recognition of Ag₄₀ nanowheel through non-covalent interaction
- Role of solvent in inducing chirality in superstructures

Quinoline-2-thiol [QL-2-SH] F_3C OAg Silver trifluoro acetate F_3C OAg S/R- silver trifluorolactate F_3C OAg F_3C OAg


Supplementary Figure 3. Synthetic routes of Ag₆, Ag₁₁, $\{Ag_{10}\}_n$, Ag₄₀, R-Ag₄₀, S-Ag₄₀, $\{Ag_{41}\}_n$ and Ag₄₀-NO₃ protected by QL-2-SH ligand.

S4. structure analysis for $Ag_6(QL-2-S)_6$ (Ag_6) based on SCXRD.

S5. Crystal structure of Ag₁₁

S5. Crystal structure of Ag_{11} . (a) The total structure of Ag_{11} , $Ag_{11}(QL-2-S)_2(HQL-2-S)_4(tBuS)_4(NO_3)_5(CH_3CN)\cdot CH_3CN$, where their thiol ligands with different steric hindrance exhibit a 'Janus' distribution mode. (b) Two $AgNO_3$ as capping agents located on both sides of the Ag_9 building block in Ag_{11} . (c) Six quinoline-2-thiol ligands including 2 QL-2-S- and 4 HQL-2-S, distributed on the same side of Ag_{11} . (d) Four 'BuS- ligands distributed on the same side of Ag_{11} . (e) Ag_2 (dark blue) and Ag_7

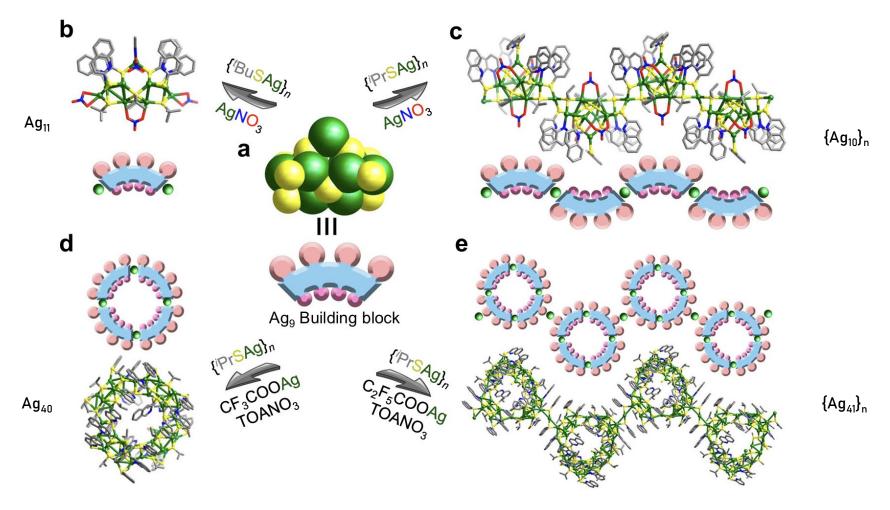
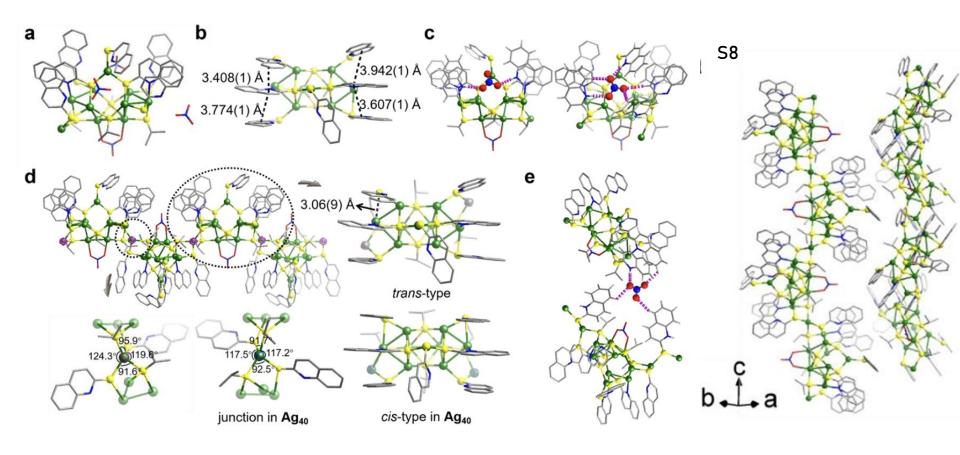



Fig. 1 Hierarchical assembly based on Ag_9PBBs . a Ag_9 building block, protected by two types of thiol ligands. b Monomer Ag_{11} , blocked by two $AgNO_3$ molecules at both ends, inhibited further aggregation. c One-dimensional aggregate $\{Ag_{10}\}_n$, where Ag_9PBBs are connected by Ag_9 ions to form an infinite structure. d Tetramer Ag_{40} nanowheel, in which four PBBs are gathered together through the silver nodes to form a discrete structure. e One-dimensional aggregate $\{Ag_{41}\}_n$, in which Ag_{40} nanowheels are connected by additional Ag atoms to form an infinite structure.

S7. Crystal structure of $\{Ag_{10}\}_n$. (a) Asymmetric unit, $\{Ag_{10}(QL-2-S)_2(HQL-2-S)_5(iPrS)_4(NO_3)_4\}_n$. (b) Intramolecular face-to-face $\pi\cdots\pi$ stacking interactions. (c) NO_3^- anions confined in local cavity between the HQL-2-S ligands via electrostatic interaction, $N(sp2)-H\cdots O$, $C(sp2)-H\cdots O$ interactions and weak coordination. (d) The differences between the junctions, Ag_9 building block and connection types in $\{Ag_{10}\}_n$ and Ag_{40} . S8. Packing structures of $\{Ag_{10}\}_n$ in single crystals.

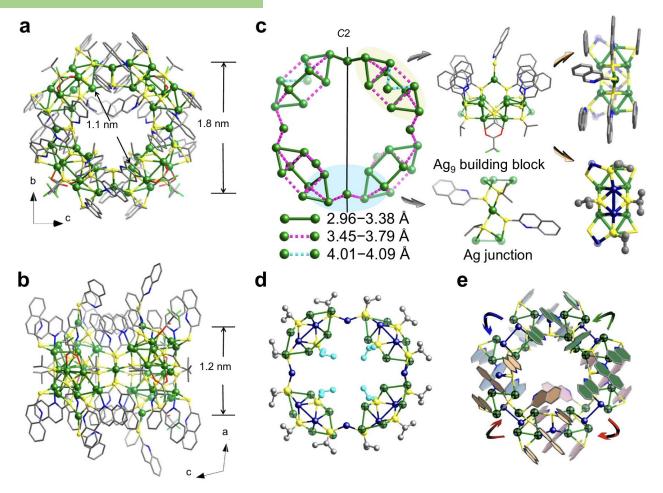
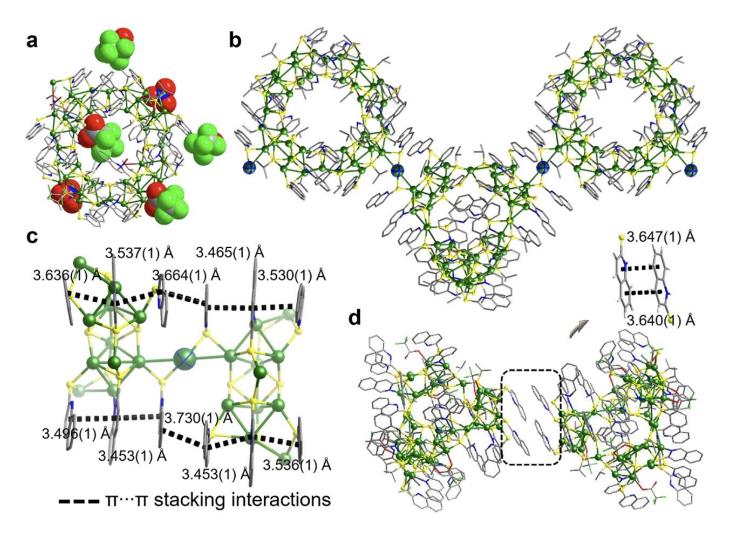



Fig. 2 Crystal structures of Ag_{40} . a,b View of nanowheel Ag_{40} in the a-axis (a) and b-axis (b) directions. c Metal skeleton with a C_2 symmetry of Ag_{40} , constructed by four $[Ag_9(QL-2-S)_2(HQL-2~S)_5(^iPrS)_4(CF_3COO)]^{2+}$ PBBs $(Ag_9, pale yellow shadow)$ and four $[Ag(^iPrS)_2(HQL-2~S)_2]^-$ junctions (pale blue shadow). d Distribution of small sterically hindered $^iPrS-$ ligands on the metal skeleton of Ag_{40} , highlighting the four $^iPrS-$ ligands inside the nanowheel (blue) and a ring composed of 12 metal atoms in almost the same plane (dark blue). e Distribution of quinoline-2-thiol ligands with larger steric hindrance on the metal skeleton of Ag_{40} , highlighting the ligands on different PBBs in different colors. .

S9. Crystal structure of $\{Ag_{41}\}_n$. (a) Asymmetric unit of $\{Ag_{41}\}_n$. (b) One-dimensional aggregate $\{Ag_{41}\}_n$, in which Ag_{40} nanowheels are connected by additional Ag atoms (front ellipses style with blue inner lines) to form an infinite structure. (c) Intrachain face-to-face π --- π stacking interactions. (d) Intermolecular face-to-face π --- π stacking interactions of Ag_{40} .

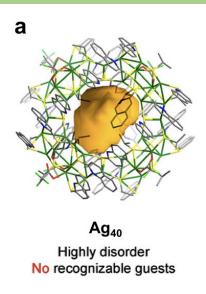
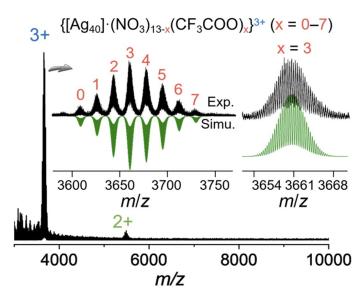
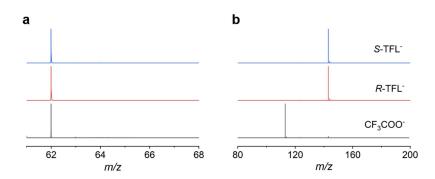
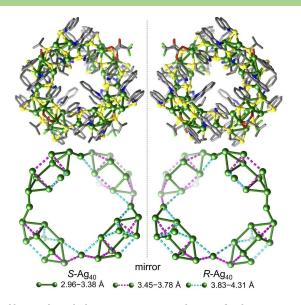
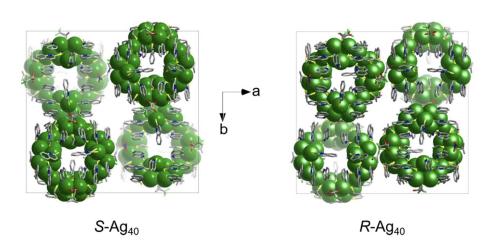




Fig. 3 a Ag_{40} with an internal nanospace.



S23. ESI-MS of Ag₄₀ dissolved in DCM collected in positive mode.


	$\{[Ag_{40}(QL-2-S)_8(HQL-2-S)_{20}(^iPrS)_{16}(NO_3)_{13-x}(CF_3COO)_x]^{3+} (x = 0-7)$
0	${Ag_{40}(QL\text{-}2\text{-}S)_8(HQL\text{-}2\text{-}S)_{20}(^iPrS)_{16}(NO_3)_{13}}^{3+}$
1	$\{Ag_{40}(QL\text{-}2\text{-}S)_8(HQL\text{-}2\text{-}S)_{20}(^iPrS)_{16}(NO_3)_{12}(CF_3COO)_1\}^{3+}$
2	${Ag_{40}(QL\text{-}2\text{-}S)_8(HQL\text{-}2\text{-}S)_{20}(^{i}PrS)_{16}(NO_3)_{11}(CF_3COO)_2}^{3+}$
3	$\{Ag_{40}(QL\text{-}2\text{-}S)_8(HQL\text{-}2\text{-}S)_{20}(^iPrS)_{16}(NO_3)_{10}(CF_3COO)_3\}^{3+}$
4	${Ag_{40}(QL-2-S)_8(HQL-2-S)_{20}(^iPrS)_{16}(NO_3)_9(CF_3COO)_4}^{3+}$
5	${Ag_{40}(QL\text{-}2\text{-}S)_8(HQL\text{-}2\text{-}S)_{20}(^iPrS)_{16}(NO_3)_8(CF_3COO)_5}^{3+}$
6	${Ag_{40}(QL-2-S)_8(HQL-2-S)_{20}(^iPrS)_{16}(NO_3)_7(CF_3COO)_6}^{3+}$
7	${Ag_{40}(QL-2-S)_8(HQL-2-S)_{20}(^iPrS)_{16}(NO_3)_6(CF_3COO)_7}^{3+}$

S23. Mass spectrum of Ag_{40} and S-/R- Ag_{40} in negativeion mode, confirming the presence of NO^{3-} (a), CF_3COO^{-} and S-/R-TFL- (b)

S19. Ball-and-stick representation of the enantiomers and their metal skeletons of S-Ag₄₀ and R-Ag₄₀.

S20. Unit cells of S-Ag $_{40}$ (a) and R-Ag $_{40}$ (b), in which exist four chiral nanowheel molecules.

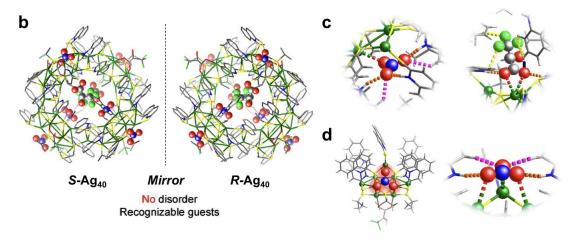


Fig. 3 b S-Ag₄₀ and R-Ag₄₀ nanowheels with C_1 symmetry, S-Ag₄₀ and R-Ag₄₀ display the chiral structure and the non-coordinated guest anions (NO₃⁻ and S-/R-TFL⁻) in the internal nanospace. c, d Non-coordinated guest anions confined in the internal or outer nanospace via hydrogen bonding and weak coordination.

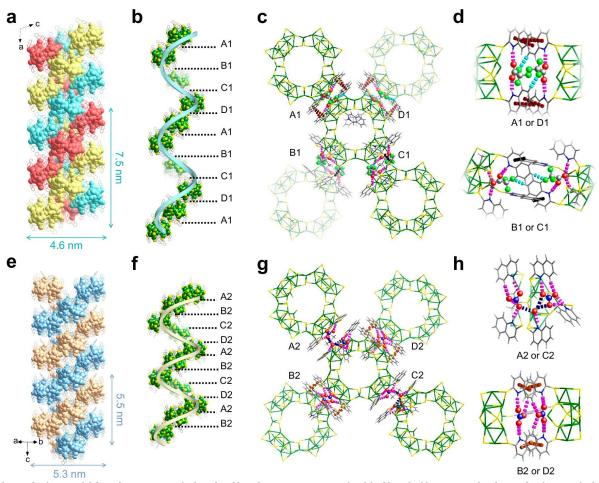
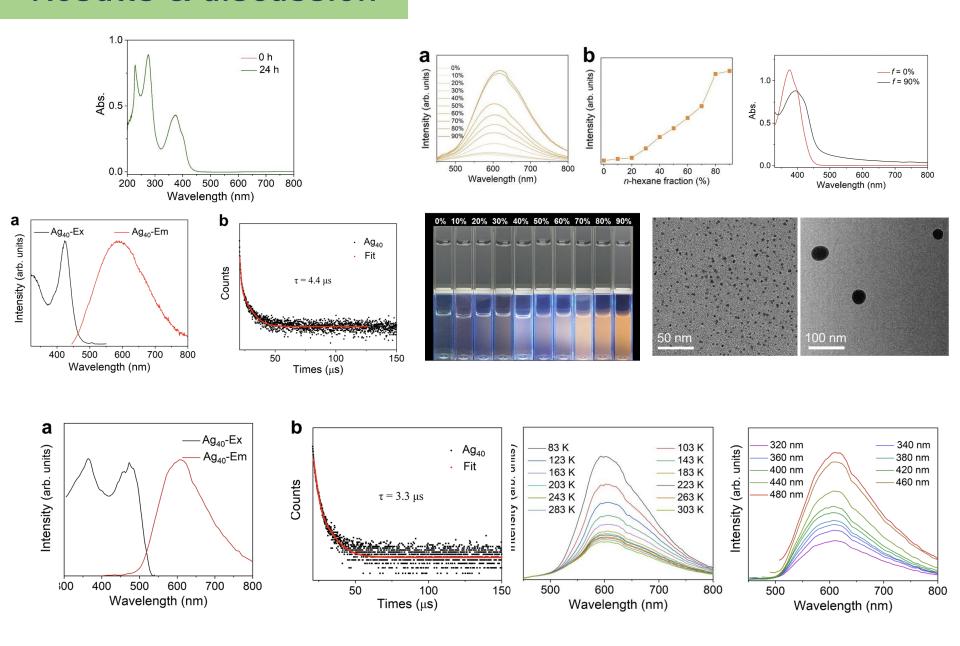



Fig. 4 a Self-assembly of Ag_{40} NCs into a triple-helical structure. b Helical linear chain of the triple-helical superstructure oriented and connected by two different surface motif pairs of Ag_{40} (A1/D1 and B1/C1). c Four types of motif matching between the neighboring nanowheels in the Ag_{40} supercrystal. d Intermolecular interactions of the two different surface motif pairs of Ag_{40} , e Self-assembly of S- Ag_{40} NCs into a double-helical structure. f Helical linear chain of the double-helical superstructure is orientally connected by two different surface motif pairs of S- Ag_{40} (A2/C2 and B2/D2). g Four types of motif matching between neighboring nanowheels in the S- Ag_{40} supercrystal. h Intermolecular interactions of two different surface motif pairs of S- Ag_{40}

Aggregation-induced emission enhancement (AIEE) behavior

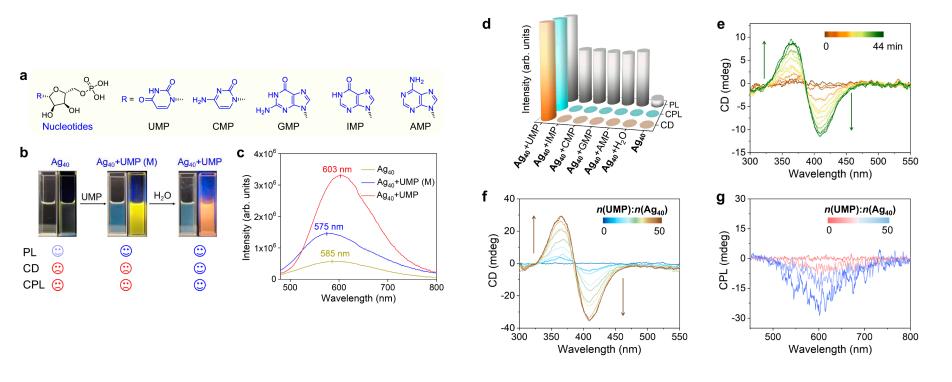


Fig. 5 a Molecular structure of various nucleotides. b CD and CPL activities triggered by the co-assembly process of Ag_{40} in DCM with UMP (dissolved in DMSO) and H_2O c Emission spectra of different stages (initial, Ag_{40} ; intermediate, Ag_{40} + UMP (M); final, Ag_{40} + UMP + H_2O , abbreviated as Ag_{40} + UMP) in the recognition (λ_{ex} = 430 nm). d Column chart of the emission intensity of the PL, CD, and CPL spectra for Ag_{40} , Ag_{40} + H_2O , and the co-assemblies with nucleotides. e Time-dependent CD spectra of the co-assemblies formed by Ag_{40} (1 × 10⁻⁵ mol L⁻¹) in 3 mL of DCM with 20 µL of UMP (3 × 10⁻² mol L⁻¹) in DMSO and 20 µL of H_2O . Interval: 4 min. f CD spectra of the co-assemblies formed by Ag_{40} (1 × 10⁻⁵ mol L⁻¹) in 3 mL of DCM with 0–50 µL of UMP (3 × 10⁻² mol L⁻¹) in DMSO and 20 µL of H_2O . Interval: 5 µL. g CPL spectra of the co-assemblies formed by Ag_{40} (1 × 10⁻⁵ mol L⁻¹) in 3 mL of DCM with 0–50 µL of UMP (3 × 10⁻² mol L⁻¹) in DMSO and 20 µL of H_2O . Interval: 5 µL.

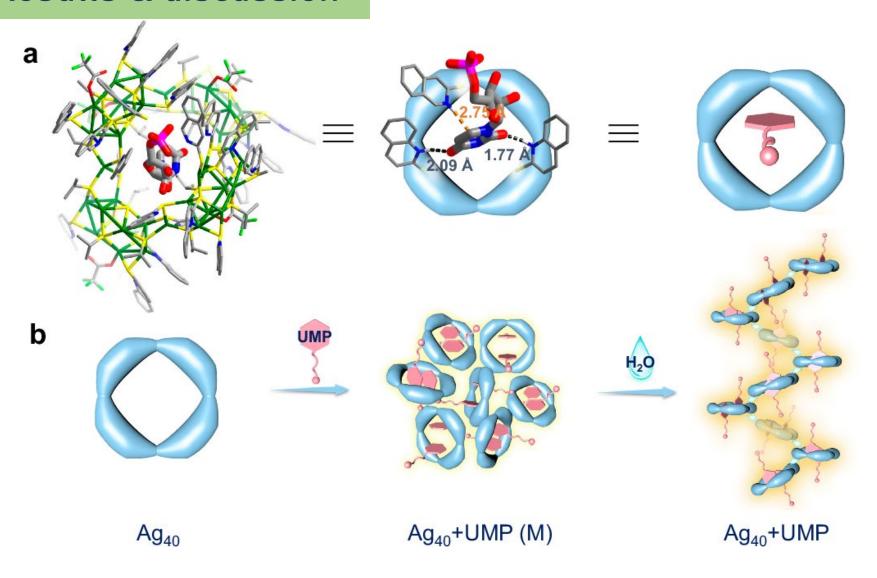


Fig. 6 a DFT (PBE0/def2-SVP)-calculated structure of the Ag_{40} and UMP co-assembly, dotted lines indicate non-covalent interactions, including N-H···O (black line) and N-H··· π (orange line). Color codes: Ag green, S yellow, C gray, N blue, F cyan, O red, H white. b Scheme showing the chiral co-assembly process of Ag_{40} and UMP mediated by H_2O .

Conclusion

- It developed a series of molecules from small NCs like Ag_6 , Ag_{11} to one-dimensional $\{Ag_{10}\}_n$ chain, tetrameric Ag_{40} nanowheel, S/R- chiral Ag_{40} nanowheel, ID chain of $\{Ag_{41}\}_n$ based on primary building blocks Ag_9
- Formation of triple and double-helical assembly of Ag₄₀ nanowheel by regulating the surface anions of the NCs
- It shows how subtle changes in solvent, and surface anions can regulate the formation of complex hierarchical structure
- Specific co-assembly formation of Ag_{40} nanowheel with UMP nucleotide and induction of chirality into the co-assembly mediated by water