nature chemistry

Article

https://doi.org/10.1038/s41557-024-01696-6

Self-assembly of chiroptical ionic co-crystals from silver nanoclusters and organic macrocycles

Received: 28 May 2024	Yingwei Li 13,4, Grant J. Stec 14, Hong Ki Kim 1, Surendra Thapa ¹ ,
Accepted: 12 November 2024	Shao-Liang Zheng [©] ¹ , Arthur McClelland [©] ² & Jarad A. Mason [©] ¹ ⊠
Published online: 8 January 2025	

Authors and Affiliations

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA Yingwei Li, Grant J. Stec, Hong Ki Kim, Surendra Thapa, Shao-Liang Zheng & Jarad A. Mason Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA Arthur McClelland

Background

The Challenge in Nanocluster Assembly

- * Traditional methods struggle to control nanocluster co-crystallization (weak intermolecular forces, racemic outcomes).
- ❖ No general strategy to engineer solid-state chirality from achiral precursors.

Why It Matters?

Chirality enables advanced technologies:

- Circularly polarized light (CPL) detectors for quantum communication
- Enantioselective catalysis
- Optical computing Current materials: Low dissymmetry factors ($g\sim10-3$) limit practicality.

Why This Works

- •Combines:
- •Atomically precise nanoclusters (uniform size/symmetry)
- •Supramolecular directionality (predictable assembly)
- •Key point: Chirality emerges from collective packing, not pre-chiral units.

Molecular LEGOs?

Motivation:

To design and synthesize functional nanocluster-based materials, we sought a class of tunable organic molecules that could direct how nanoclusters and their associated surface ligands pack in the solid state through supramolecular interactions and provide access to unique properties.

❖ Accordingly, we targeted a subset of platform-based organic macrocycles termed N,N',N"−trialkyltriazatriangulenes (TATA+)

Design criteria:

- (1) a size that can be easily varied to match the size, shape and symmetry of a given nanocluster;
- (2) a symmetric aromatic core surrounded by dangling alkyl groups to provide a balance of structural rigidity and conformational flexibility;
- (3) a net positive charge (+1) to fix stoichiometry during co-crystallization with anionic metal nanoclusters;
- (4) a highly delocalized charge distribution to allow directional non-covalent interactions with nanoclusters to dominate over non-directional electrostatics; and
- (5) a stable chromophore to introduce collective optical phenomena to cluster-based materials.

N,N',N''—trialkyltriazatriangulenes (TATA+) $Ag_{25}(SR)_{18}$ (where SR = 2,4-DMBT)

Introdution with conceptual breakthrough

The Supramolecular Design Core idea: They use cationic TATA+ macrocycles to template anionic $Ag_{25}(SR)_{18}^-$ nanocluster.

Key interactions: Marionette-like alkyl chain alignment (-59.5 kcal/mol) CH- π/π - π intraction (-90.9 kcal/mol).

Chirality Emerges Hierarchically

- •Achiral TATA+ forms chiral 2D monolayers via alkyl chain rotation.
- •These templates enforce homochiral ligand orientations on nanoclusters during co-crystallization.

Synthetic Control

•Varying TATA+ alkyl chain length (C3–C8) tunes: Nanocluster packing (achiral/racemic → homochiral) Inter-cluster distances.

Chiroptical effects

Source: Internet

"Could this approach bypass traditional chiral synthesis in pharmaceutical manufacturing?"

Synthesis of triazatriangulenium tetrafluoroborate (TATA+) salts.

Synthesis of tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate (2)

C_m alkylamine (33 equiv.)
NMP, reflux
$$BF_4$$
2

Synthesis of asymmetric $TATA2C_m1C_n^+BF_4^-$ (**4a-e**):

2C_m-DAH

Stability of Ag₂₅ clusters with different counterions

UV-vis-NIR absorption spectra of a, Ag25(SR)18-PPh4+, b, Ag25(SR)18-TATA3C3+, and c, Ag25(SR)18-TATA3C7+ in CH2C12 solution at different time points. Spectra in b and c are offset vertically for clarity.

Representative optical images of $NOIC_{25-3Cm}$ (m = 3-8)

Designing functional NOICs

a, Scheme illustrating how TATA+ can be paired with anionic nanoclusters to form NOICs. **b**, Crystal structure of the chiral NOIC_{25-3C7}–L(&–R). The inset is an optical image of an enantiomeric pair of NOIC_{25-3C7}–L/–R. c, View of the 2D sheets of TATA3C7+ ions and chiral Ag₂₅(SR)₁₈–L (or –R) within NOIC_{25-3C7}. Light blue, N; magenta, C; in TATA3C7+; violet/pink/purple, Ag; in a/b/c layers, yellow, S; grey, C; white, H.

Structural Evidence

- •X-ray crystallography reveals:
- ${}^{\circ}\text{Homochiral NOIC}_{25-3\text{C7}}$ in R3 sp ace group.
- $^{\circ}$ Racemic NOIC_{25-3C3} vs. achiral NOIC_{25-2C4,1C8}.

113.123

Intermolecular interactions within NOICs

The Twist:

- •Achiral → Chiral Alchemy: Neither component is chiral alone, but together, they form crystals with left- or right-handed "light-twisting" abilities.
- •Marionette Assembly: TATA+'s flexible "arms" (alkyl chains) grip the nanoclusters like puppet strings, forcing their surface ligands into chiral orientations during crystallization.
- •These co-crystals achieve a dissymmetry factor (|g|) of 0.15—15× higher than most chiral nanomaterials—making them potent for quantum optics.

a, Illustration of the interaction between TATA⁺ and a spherical nanocluster. **b**,**c**, Marionette-like (**b**) and C-H··· π (**c**) interactions between a TATA3C7⁺ molecule and a Ag25(SR)₁₈⁻ nanocluster in NOIC_{25-3C7}–R. Lig purple, N; magenta, C; in TATA3C7⁺, purple, Ag; yellow, S; grey, C; white, H.

The evolution of chirality in NOICs.

How Chirality Transfers

Step 1: TATA+ alkyl chains form chiral 2D monolayers.

Step 2: Marionette interactions "lock" nanocluster ligand orientations.

Step 3: Exciton coupling across TATA layers amplifies dissymmetry.

a, The marionette-like interactions in $NOIC_{25-3Cm}$ (m = 6, 7 or 8) are shown along with a representative bottom view of a $Ag_{25}(SR)_{18}$ –R nanocluster within these NOICs. The depicted $Ag_{25}(SR)_{18}$ –R nanoclusters have only right-handed thiolate rotations. b, Crystal structure of $NOIC_{25-3C3-M}$ with racemic $Ag_{25}(SR)_{18}$ – R/L pairs. The inset is an optical image of $NOIC_{25-3C3-M}$. **c**, Crystal structure of NOIC_{25-2C4.1C8-A} with achiral Ag₂₅(SR)₁₈–A nanoclusters. The inset is an optical image of NOIC_{25-2C4 1C8-A}. The $Ag_{25}(SR)_{18}$ ——A nanocluster has both rightand left-handed thiolate rotations. Purple, Ag; yellow, S; light blue, N. Blue, magenta and dark yellow, C in TATA3C6⁺, TATA3C7⁺ and TATA3C8⁺, respectively. Pink, orange, C in TATA3C3+ and TATA2C41C8+, respectively. Violet/green, C for opposite thiolate rotations in NOIC25-2C4,1C8-A.

Fluorescence-Detected Circular Dichroism (FDCD) of NOICs

- **a**, Schematic of the FDCD set-up. **b**, Dissymmetry factor of NOICs and other representative chiroptical active materials,
- c, FDCD IL–IR spectra of the L and R enantiomers of NOIC25–3C7 are compared with an amorphous film (grey line) and a solution of dissolved NOIC25–3C7 (black line).

The inset shows an optical image of a pair of L/R co-crystals. Scale bar, 100 μm .

d. Corresponding FDCD g_{abs-lum} values. The excitation wavelength was 490 nm for all measurements.

Calculated association energy of TATA⁺ and $Ag_{25}(SR)_{18}^--R$.

a, Schematic illustration of rotational analysis of a TATA3C7+ residing on a Ag25(SR)18--R nanocluster at every 10°. b, Relative E(SCF) energies (black circles) of the TATA3C7+ and Ag25(SR)18--R pair in NOIC25-3C7-R as a function of torsional angle and a fit to the values (red dotted line).

Lattice structures of NOICs with symmetric TATAs

Structures of a, NOIC25-3C6-L/R, b, NOIC25-3C7-L/R and c, NOIC25-3C8-L/R. In TATA3C8+ (panel c), the three C8 chains are disordered among three conformations (marked in different colors) with occupancies of each disorder type = 0.33 for NOIC25-3C8-L; the C5-C8 atoms of the three C8 chains (highlighted in orange) are disordered between two conformations with occupancies of both disorder type I/II = 0.5(3) for NOIC25-3C8-R. Color codes: light blue = N, blue/magenta/yellow/orange/pink = C in TATA+; purple = Ag, yellow = S, grey = C. Note that H atoms and CH2Cl2 solvent molecules in the crystal structures are omitted for clarity.

Effect of intermolecular exciton coupling on the dissymmetry factor.

a, A one-dimensional chain of TATA+ molecules with fixed 20.6 Å spacing and a variable angle, θ , between the transition dipole

(red) and vector connecting TATA+ centers (blue). b, Rotational strength vs. number of TATAs in the one-dimensional chain for TATA+ molecules rotated 10° clockwise (θ = 100°, red) or 10° counterclockwise (θ = 80°, blue) away from perpendicular. c, Periodic variation of dissymmetry factor as the angle between the intermolecular vector and transition dipole vector changes. The simulated dissymmetry factor corresponding to the experimental θ is indicated in pink.

Conclusion

They introduce a supramolecular approach to direct the assembly of atomically precise silver	
nanoclusters into a series of nanocluster-organic ionic co-crystals with tunable structures and properties	
Concepts from supramolecular chemistry was adopted to control the assembly of nanoclusters .	
When shorter alkyl chain lengths are used, chiral resolution no longer occurs, and either racemic or	
achiral co-crystals form.	
The chiral NOICs reported here offer new opportunities for chiroptical devices that can take advantage	
of the high molar absorptivity of TATA ⁺ .	

