

In Situ Encapsulation of Atomically Precise Nanoclusters in Reticular Frameworks via Mechanochemical Synthesis

Yi-Ming Li, Dongxia Shi, Jian Yuan, Rui-Min Zuo, Hui Yang, Jinhui Hu, Shu-Xian Hu,* Hongting Sheng,* and Manzhou Zhu*

Y.-M. Li, D. Shi, H. Yang, J. Hu, H. Sheng, M. Zhu

Department of Chemistry and Centre for Atomic Engineering of

Advanced Materials

Anhui Province Key Laboratory of Chemistry for Inorganic/Organic

Hybrid Functionalized Materials

Key Laboratory of Structure and Functional Regulation of Hybrid

Materials of Ministry of Education

Anhui University

Hefei, Anhui 230601, P. R. China

E-mail: shenght@ahu.edu.cn; zmz@ahu.edu.cn

Y.-M. Li, M. Zhu

School of Chemistry and Materials Engineering and Anhui Provincial Key

Laboratory of Green Carbon Chemistry

Fuyang Normal University

Fuyang, Anhui 236041, P. R. China

J. Yuan

Avogadral Solutions

3130 Grants Lake Boulevard #18641, Sugar Land, TX77496, USA

R.-M. Zuo, S.-X. Hu

Department of Physics

University of Science and Technology Beijing

Beijing 100083, P. R. China

E-mail: hushuxian@csrc.ac.cn

Published: 30th October 2024

Swetashree Acharya 11.01.2025

Research Articles

Hydrogen Production Very Important Paper

How to cite: Angew. Chem. Int. Ed. 2024, 63, e202401443 doi.org/10.1002/anie.202401443

Heteroatom-Doped Ag₂₅ Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production

He Wang, Xiyuan Zhang, Wei Zhang, Meng Zhou,* and Hai-Long Jiang*

pubs.acs.org/JACS

Communication

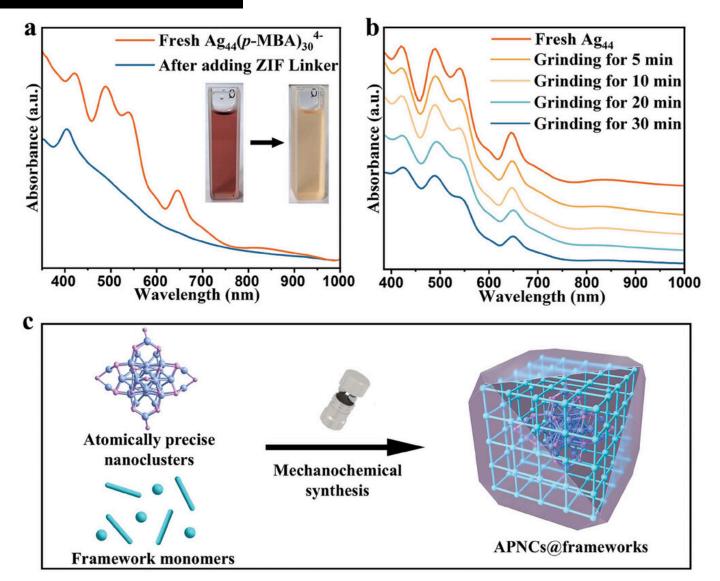
Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au₂₅@ZIF-67

Yapei Yun, Hongting Sheng,* Kang Bao, Li Xu, Yu Zhang, Didier Astruc,* and Manzhou Zhu*

Cite This: J. Am. Chem. Soc. 2020, 142, 4126-4130

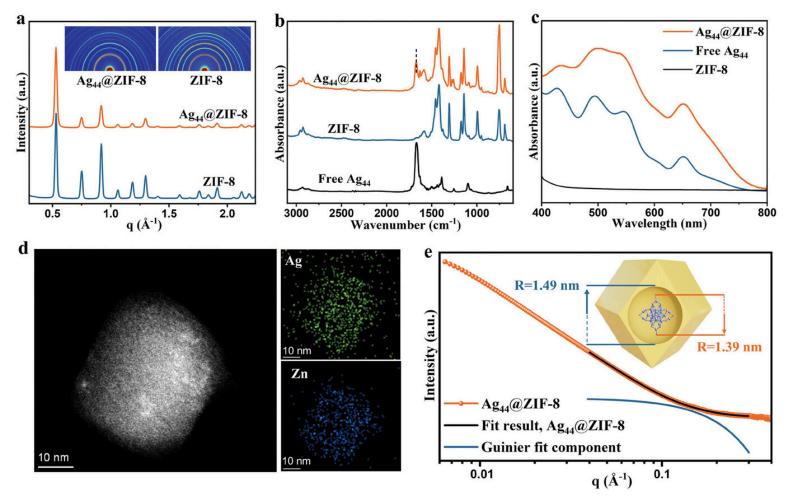
Motivation

The mechanochemical preparation of frameworks has been applied in various fields, such as nanoparticle immobilization, biomedical delivery and gas adsorption, notably for encapsulating enzymes and enhancing their catalytic activity.

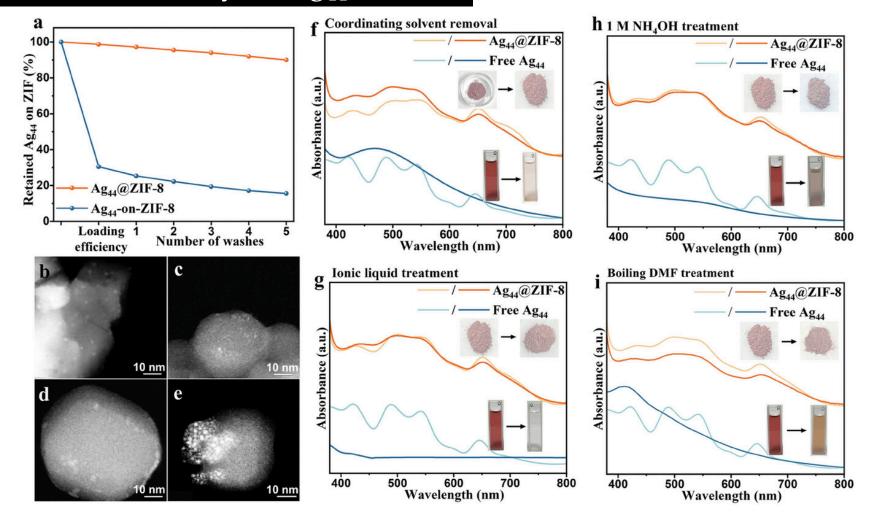

Why this paper?

Talks about a universal method for fabricating diverse APNC@framework nanocomposites under mild conditions and in a short time- which is highly desirable but challenging.

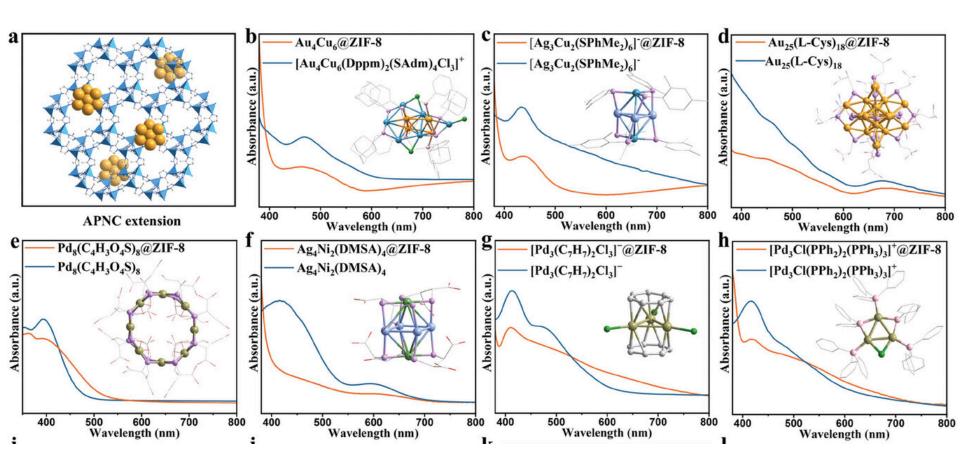
Introduction


- ➤ The combination of atomically precise nanoclusters (APNCs) and reticular frameworks is promising for generating component-specific nanocomposites with emergent properties.
- ➤ Traditional liquid-phase synthesis often hampers this potential by damaging APNCs and limiting combination diversity.
- ➤ Here, mechanochemical synthesis to explore the encapsulation of diverse oil and water-soluble APNCs within various reticular frameworks is employed. establishing a database of 21 unique APNC-framework combinations, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and multivariate MOFs.
- ➤ These framework coatings not only spatially immobilize APNCs but also secure their structures, preventing aggregation and degradation while enhancing stability and activity.
- ➤ The mechanochemical synthesis strategy facilitates tailored support screening, catering to specific needs, and shows promise for developing multifunctional systems, including enzyme-APNC@frameworks material for cascade reactions.

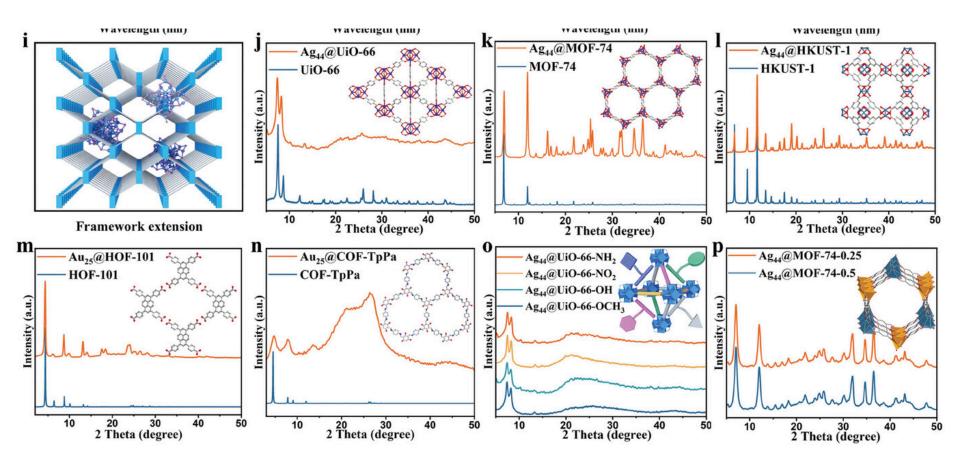
Results and discussion


Figure 1. Ag₄₄ compatibility studies and APNCs@frameworks synthesis. a) UV-vis spectra of fresh Ag₄₄ and a mixture of Ag₄₄ and the MOF linker. b) UV-vis spectrum of Ag₄₄ after grinding at 480 rpm. c) Synthesis of APNCs@frameworks.

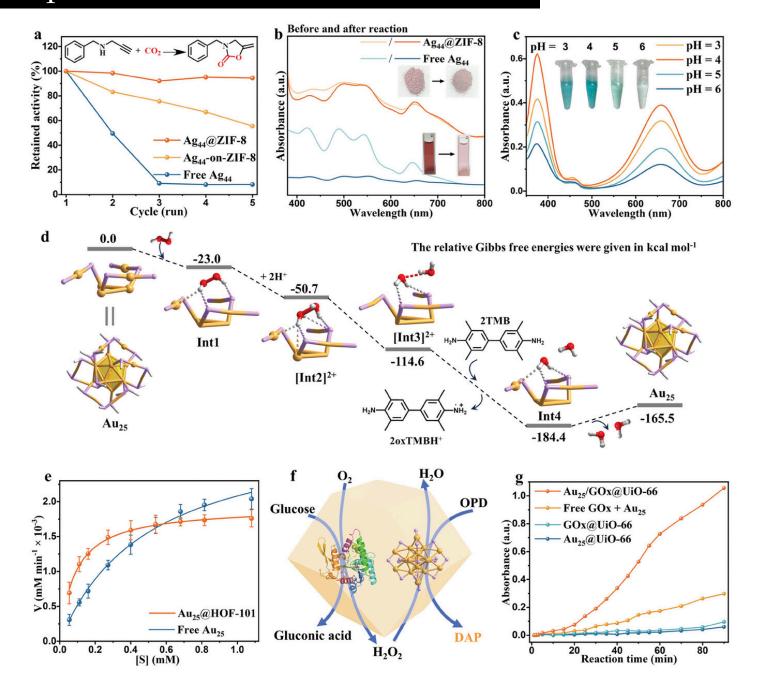
Characterization of the Ag₄₄@ZIF-8 composite


Figure 2. Characterization of the Ag₄₄@ZIF-8 composite. a) WAXS patterns of ZIF-8 and Ag₄₄@ZIF-8. b) FTIR data of ZIF-8, Ag₄₄, and Ag₄₄@ZIF-8. c) UV-vis spectra of ZIF-8, Ag₄₄, and Ag₄₄@ZIF-8. d) HAADF-STEM image of Ag₄₄@ZIF-8 and the corresponding elemental mappings of Ag and Zn. e) Fitted SAXS patterns and single-component fits (power law and Guinier fits) of Ag₄₄@ZIF-8. The inset shows the radius (arrows) of Ag₄₄ and the observed mesopores in Ag₄₄@ZIF-8.

Enhanced stability of Ag₄₄@ZIF-8


Figure 3. Enhanced stability of Ag_{44} @ZIF-8. a) Calculated loading efficiency and the wash experiments of Ag_{44} @ZIF-8 and Ag_{44} -on-ZIF-8. HAADF-STEM images of Ag_{44} @ZIF-8 b) before and c) after thermal treatment, and Ag_{44} -on-ZIF-8 d) before and e) after thermal treatment. UV-vis spectra and digital images of free Ag_{44} and Ag_{44} @ZIF-8 before (light blue and pale yellow) and after (dark blue and orange) f) coordinating solvent removal, g) ionic liquid treatment, h) 1 m NH4OH treatment, and i) boiling DMF treatment.

APNC extensions


Figure 4. APNC extensions. a–h) UV–vis spectra of the composites of ZIF-8 with $[Au_4Cu_6(Dppm)_2(SAdm)_4Cl_3]^+$ (b), $[Ag_3Cu_2(SPhMe_2)_6]^-$ (c), $Au_{25}(L-Cys)_{18}$ (d), $Pd_8(C_4H_3O_4S)_8$ (e), $Ag_4Ni_2(DMSA)_4$ (f), $[Pd_3(C_7H_7)_2Cl_3]^-$ (g), and $[Pd_3Cl(PPh_2)_2(PPh_3)_3]^+$ (h).

Reticular framework extensions

Figure 4. Reticular framework extensions. i–p) PXRD patterns of the composites of APNCs with UiO-66 (j), MOF-74 (k), HKUST-1 (l), HOF-101 (m), COF-TpPa (n), UiO-66-R (R = NH₂, NO₂, OH, OCH₃, o), and MOF-74-X (X = 0.25 and 0.5, p).

Catalytic performance of selected materials

Conclusion

- ➤ 21 APNCs@frameworks were successfully synthesized by using mechanochemical synthesis.
- ➤ This solid-state and room-temperature approach, overcomes compatibility issues associated with framework synthesis conditions, thereby preserving the structural integrity of APNCs during encapsulation.
- ➤ The resulting nanocomposites exhibit significantly improved stability and demonstrate a 315-fold increase in reactivity compared to free APNCs.
- ➤ This method expands the diversity of both APNCs and reticular frameworks, enabling the design of customized nanocomposites and multifunctional systems for specific applications.
- ➤ This diversity allows for the creation of tailormade nanocomposites capable of targeting precise functions such as HRP-mimicking catalysis and facilitates the construction of biocatalytic cascades with multiple catalytic components.