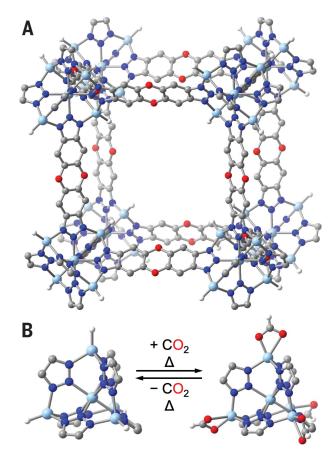


HOME > SCIENCE > VOL. 386, NO. 6723 > HIGH-TEMPERATURE CARBON DIOXIDE CAPTURE IN A POROUS MATERIAL WITH TERMINAL ZINC HYDRIDE SITE

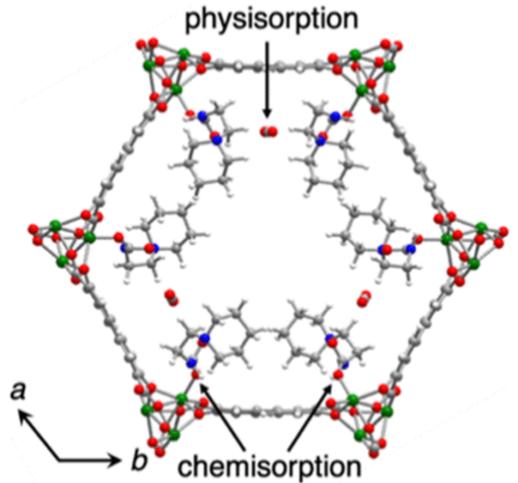
High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites

SCIENCE · 14 Nov 2024 · Vol 386, Issue 6723 · pp. 814-819 · <u>DOI: 10.1126/science.adk5697</u>


Institute for Decarbonization Materials, University of California, Berkeley, CA 94720, USA.

Department of Chemistry, University of California, Berkeley, CA 94720, USA.

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.


Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

Published on 14 Nov, 2024

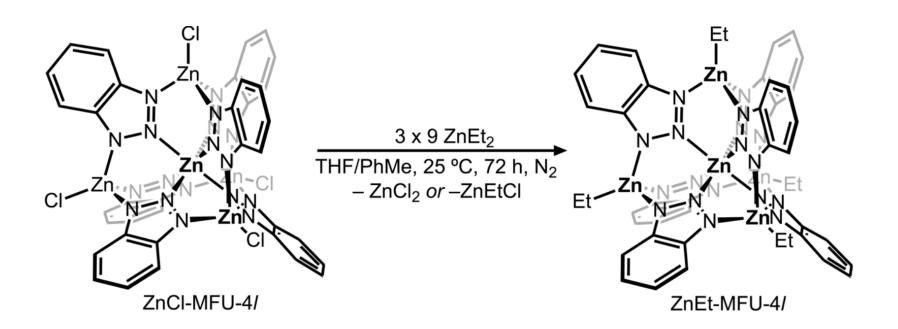
Background

- Amine-based MOFs have been used for CO₂ capture.
- Drawbacks with these MOFs are high heat capacities, volatility, and corrosivity of amines, which limit their usage.
- It is still difficult to capture CO_2 at high temperatures above 150 °C.

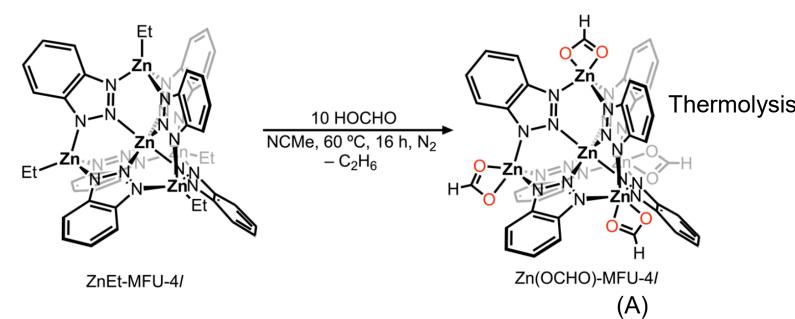
Why this paper?

- Zinc-hydride sites reversibly bind CO₂ at temperatures above 200 °C.
- Excellent stability at high temperatures.

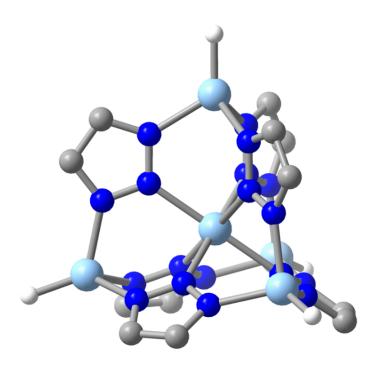
Column breakthrough experiment


The column is packed with pelletized Zn-H MOF and exposed to 20% or 4% CO₂ gas at 280 °C to simulate realistic conditions.

Data was collected until no CO₂ was detected in the outlet.


Introduction

Ligand used for MOF


3.2. Synthesis of Zn₅Br₄(btdd)₃ (ZnBr-MFU-4*l*).

3.6. Synthesis of Zn(O₂CH)-MFU-4l (Zn₅(O₂CH)_{3.76}Cl_{0.24}(btdd)₃).

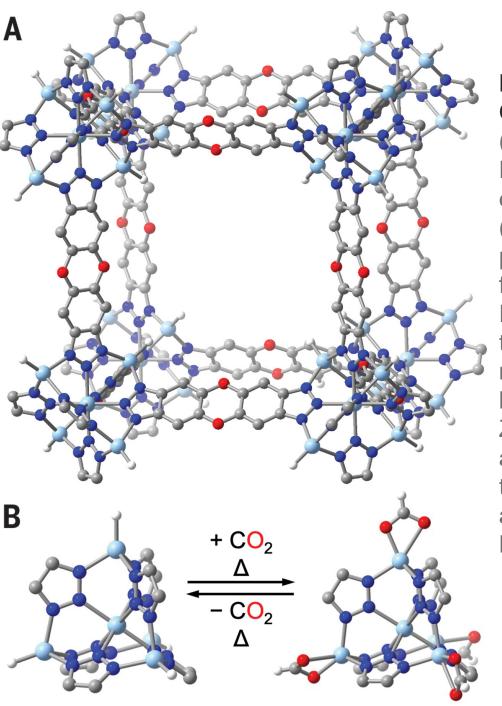

Powder neutron diffraction data

Figure S97. Portion of the solid-state structure of ZnH-MFU-4*l* solved from powder neutron diffraction showing a pentanuclear node as a ball-and-stick model. Light blue, dark blue, and gray spheres represent Zn, N, and C atoms respectively. CCDC entry value: 2352001.

Table S23. Selected bond parameters for ZnH-MFU-4*l*.

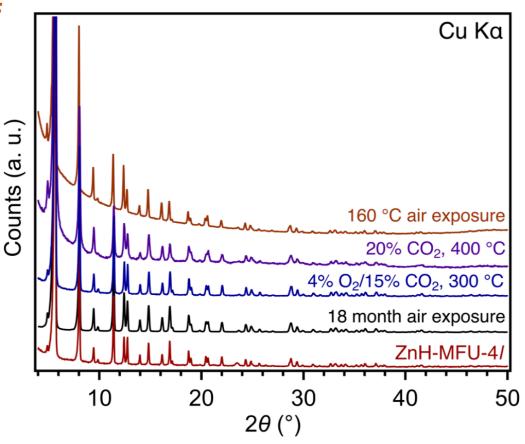
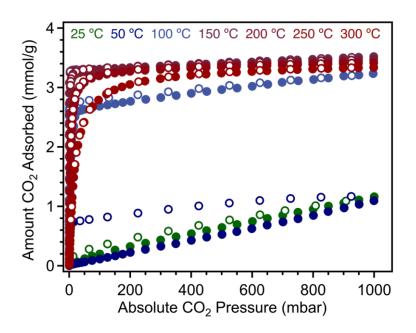

Zn2-N1	2.072(12) Å	Zn2–H1	1.56(2) Å
Zn1-N2	2.190(8) Å	$\angle Zn1$ – $Zn2$ – $H1$	180.0(0) °
Zn1-Zn2	3.660(7) Å	∠N2–Zn2–H1	121.5(5) °

Fig. 1. Reversible high-temperature CO₂ capture in a zinc hydride MOF.


(A) A portion of the structure of ZnH-MFU-4/, as determined from singlecrystal x-ray diffraction analysis. (B) (Left) Expanded view of a pentanuclear cluster node of the framework [$d_{Z_{N-H}}$ = 1.546(9) Å, N–Zn– $H = 121.2(4)^{\circ}$; table S20]. (Right) At temperatures above 200°C, CO₂ reversibly inserts into the Zn–H bonds of ZnH-MFU-4/ to generate Zn–formate species $[d_{Zn-O} = 1.971(6)]$ and 2.408(4) Å, O-C-O = 119.2(6)°; table S21]. Light-blue, gray, blue, red, and white spheres represent Zn, C, N, O, and H atoms, respectively.

Stability of the MOF

Figure S82. Comparison of powder x-ray diffraction patterns (Cu Kα radiation) collected under air for (bottom to top): pristine ZnH-MFU-4*l*, ZnH-MFU-4*l* after 18-month exposure to air at ambient temperature; ZnH-MFU-4*l* following CO₂ adsorption—desorption cycling in the presence of O₂ (adsorption: 4% O₂, 15% CO₂, 81% N₂; desorption under 100% N₂; see Figure S35) at 300 °C; ZnH-MFU-4*l* following adsorption—desorption cycling in the presence of only CO₂ and N₂ (adsorption: 20% CO₂/80%; desorption: pure N₂ at 400 °C; see Figure S33); and ZnH-MFU-4*l* following exposure to 160 °C air for 12 h. Similar reflections in all patterns indicate the retention of long-range framework crystalline order, indicative of stability under these diverse conditions. Note that the asymmetry in the 18-month exposure pattern is not due to CO₂ insertion, but likely due to the presence of residual chlorides bound to the Zn site. Indeed, IR spectroscopy analysis of the same sample and ¹H NMR spectroscopy analysis of an acid digested portion of the sample did not reveal any formate anion.

CO₂ Adsorptions at different temp

Comparison of CO₂ adsorption (filled circles) and desorption (open circles) isotherms for ZnH-MFU-4*I* at 25, 50, 100, 150, 200, 250, and 300 °C. (Lower)

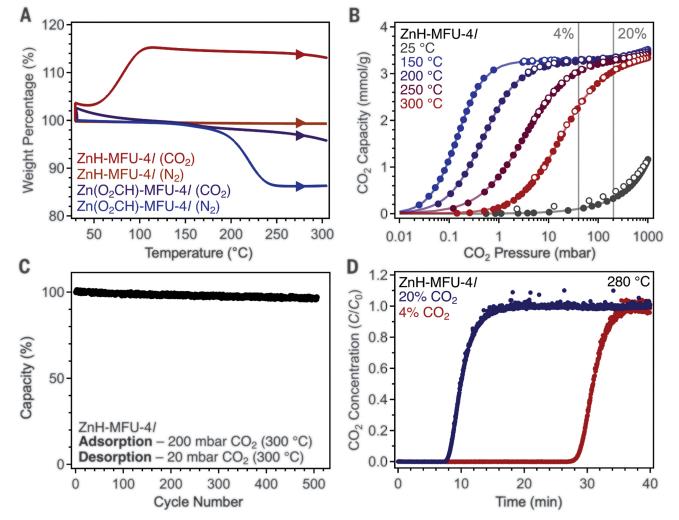


Fig. 2. High-temperature isobaric and isothermal CO₂ adsorption data for ZnH-MFU-41.

(A) Thermogravimetric analysis data collected for ZnH-MFU-4*I* or Zn(O₂CH)-MFU-4*I* under an atmosphere of pure CO₂ or N₂. (B) Variable-temperature CO₂ adsorption (filled circles) and desorption (open circles) isotherms for ZnH-MFU-4*I*. Solid lines are guides for the eyes. Vertical lines denote CO₂ concentrations relevant to flue streams produced from natural gas combine cycles and single-cycle turbines (~4% CO₂) and cement and steelmaking (20% CO₂ and higher) (18, 32, 33). (C) Cycling data for ZnH-MFU-4*I* during the course of 508 isothermal adsorption (200 mbar CO₂) and desorption under vacuum (20 mbar CO₂) cycles at 300°C, plotted as a percentage of the capacity measured for the first cycle (1.24 mmol/g). Note that the chosen desorption pressure would achieve only partial CO₂ desorption, and the measured capacities are consistent with those expected with this desorption pressure, as indicated by the isothermal data. The capacity in the final cycle was 1.19 mmol/g. See section 2.4 of the SM for experimental details and fig. S27 for the raw data. (D) Breakthrough data collected for a pelletized sample of ZnH-MFU-4*I* exposed to a flowing (10 sccm) gas stream at ~280°C consisting of 20% CO₂ in N₂ (blue data) or 4% CO₂ in N₂ (red data). See sections 2.8 and 7 of the SM for experimental details.

4.4. Isosteric enthalpies of adsorption.

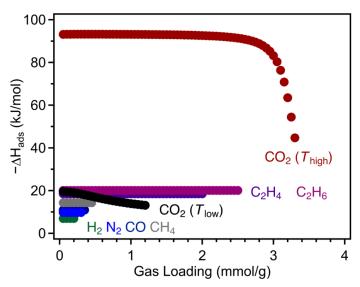


Figure S24. Calculated isosteric enthalpies of adsorption ($\Delta H_{\rm ads}$) for various gases in ZnH-MFU-4l as a function of loading, determined using the Clausius-Clapeyron equation (see Section 2.6 for details). Note these data were obtained based on fits to adsorption isotherms collected over different temperature ranges for each gas (see Table S5).

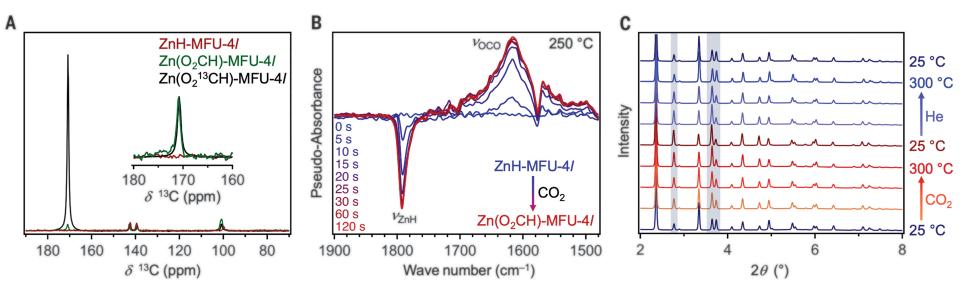


Fig. 3. Spectroscopic and structural characterization of reversible CO₂ uptake in ZnH-MFU-4*I*.

(A) Solid-state 13 C{ 1 H} cross polarization NMR spectra (magic angle spin rates of 20 kHz) for ZnH-MFU-4*I*, Zn(O₂CH)-MFU-4*I*, and ZnH-MFU-4*I* dosed with 1 bar 13 CO₂ at ~280°C, revealing a peak at 170.8 ppm corresponding to formate in Zn(O₂CH)-MFU-4*I* and Zn(O₂ 13 CH)-MFU-4*I*. The inset depicts the intensity-normalized formate 13 C resonance. (B) Difference spectra obtained from subtracting time-resolved DRIFTS data for a sample of ZnH-MFU-4*I* dosed in situ with 200 mbar CO₂ at 250°C from a spectrum collected for ZnH-MFU-4*I* at 250°C (t = 0 corresponds a spectrum collected immediately before dosing). (C) Representative powder x-ray diffraction patterns collected during the course of the in situ gas-dosing experiment. Starting from a sample of ZnH-MFU-4*I* cooled from 300° to 25°C under He (bottom blue trace), diffraction patterns ($\lambda = 0.45207$ Å) were collected for ZnH-MFU-4*I* during the course of heating from 25° to 300°C and then cooling under flowing CO₂(10 sccm, orange to dark-red traces); heating from 25° to 300°C under He to desorb CO₂; and finally cooling to 25°C under He (10 sccm; blue traces). Rietveld refinements of the top and bottom patterns indicate that the structure of ZnH-MFU-4*I* is the same after cycling. Select patterns are shown to highlight changes with heating under the different gas atmospheres. Highlighted reflections are diagnostic of structural changes. Additional diffraction patterns are provided in fig. S86

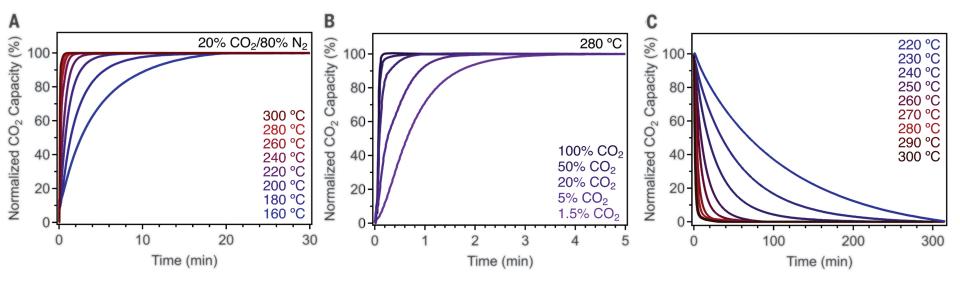


Fig. 4. Kinetics of CO₂ adsorption and desorption.

(A) Kinetic adsorption profiles collected for ZnH-MFU-4/ exposed to a flowing 20% CO_2 stream with N_2 balance at ~1 bar and temperatures ranging from 160° to 300°C (see section 2.13.2 of the SM for details). Saturation with CO_2 occurred more rapidly as the temperature of the gas stream was increased. (B) Kinetic adsorption profiles collected for ZnH-MFU-4/ at 280°C exposed to flowing gas streams (~1 bar) with CO_2 concentrations ranging from 1.5% CO_2 (balance N_2) to 100% CO_2 . Saturation with CO_2 occurred more rapidly as the concentration of CO_2 was increased. (C) Variable-temperature kinetic desorption profiles collected for $Zn(O_2CH)$ -MFU-4/ under flowing N_2 (see section 2.13.4 of the SM for details). All measurements were conducted under a flow rate of 100 sccm with a thermogravimetric analyser

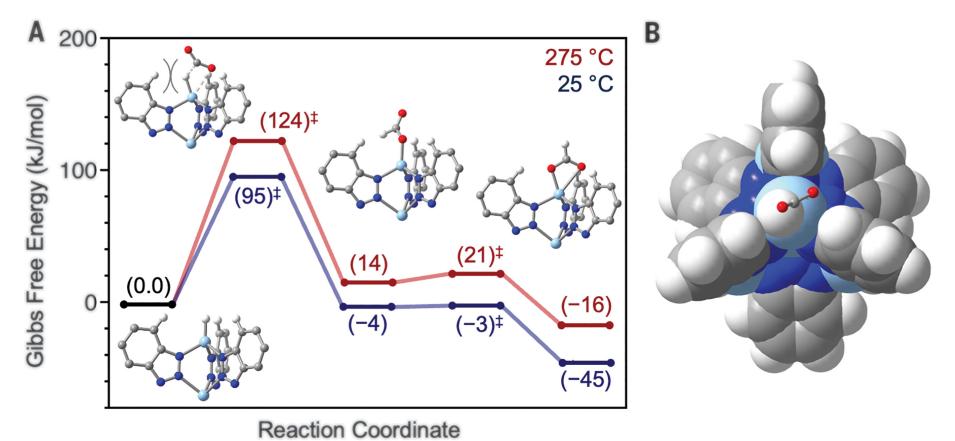


Fig. 5. Calculated free-energy landscape for CO₂ insertion into the Zn–H bond.

(A) Free-energy landscape for the reaction of CO_2 with the model $Zn_5H_4(bta)_6$ cluster to yield $Zn_5(O_2CH)_4(bta)_6$ at 25° and 275°C. The large barrier to CO_2 insertion (95 kJ/mol at 25°C) is consistent with the absence of CO_2 insertion reactivity at ambient temperature. At 275°C, there is still a large barrier to CO_2 insertion, but adsorption remains thermodynamically favored (see table S25), and high temperature provides enough thermal energy to overcome this barrier (see section 12 of the SM for computational details). (B) An overhead view of space-filling models illustrating the calculated transition state for CO_2 insertion into the Zn-H bond of $Zn_5H_4(bta)_6$. As the CO_2 approaches the metal center, the hydride ligand is displaced and comes into close contact with one of the SC_2 by the contributes to the large activation barrier for SC_2 insertion

Conclusions

Zn-H MOF demonstrates the ability to reversibly bind CO₂ at temperatures above 200 °C.

Zn-H MOF captures effectively and rapidly from various point sources, including industrial exhausts and efficient even in low CO₂ conditions.