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The Rayleigh instability of small water drops is usually studied in the laboratory by
allowing the drops to evaporate while supporting them in an external electric field. It is
shown that, although this field is several orders of magnitude smaller than the radial field
of the charged drops, it produces appreciable deviations from sphericity near the instability
point even though the limiting value of charge is affected very little. These experiments are
thus not suitable for verifying the theoretically predicted behavior of an isolated drop,
though they probably do model quite well the behavior of droplets evaporating in the
electric field of the atmosphere.



A liquid jet, initially of constant radius, i1s falling vertically under gravity. The liquid
length increases and reaches a critical value. At this critical value, the jet loses its cylindrical
shape as it decomposes into a stream of droplets. This phenomenon occurs primarily as a result
of surface tension.

Joseph Plateau first characterized this instability in 1873 through experimental
observation, building on the work of Savart. He noted the instability arose when the liquid
column length exceeded the column diameter by a factor of about 3.13 (Plateau, 1873). Lord
Rayleigh later corroborated Plateau’s work, giving an analytical explanation of this physical
observation.

This liquid behavior derives from the existence of small perturbations in any physical
system. All real-world flows have some non-negligible external disturbance that will increase

exponentially in unstable systems.
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Many, it may even be said, most of the still unexplained phenomena
of Acoustics are connected with the mstabmt;f of jets of flnid. For this
instability there are two causes; the first is operatwa in the case of jets
of heavy liguids, e.g., water, projected into air (whose relative density
is negligible), and has been investigated by Platean in his admirable
researches on the figures of-a liquid mass, withdrawn from the action
of gmwty. It consists in the operation of the capillary force, whose
effect is to render the infinite cylinder an unstable form of equilibrium,
aud to favour its disintegration into detached masses whose aggregate
surface is less than that of the cylinder. The other cause of instability,
which is operative even when the jet and its environment are of the same
material, is of & more dynamical character.

With respect to instability dne to capillary force, the principal
problem is the determination, as far as possible, of the mode of disinte-
gration of an infinite cylinder, and in particular of the number of masses
into which a given length of cylinder may be expected to distribute
itself. It must, however, be observed that this problem is uot so
definite as Plateau seems to think it; the mode of falling away from
unstable equilibrium necessarily depends upon the peculiarities of the
small displacements to which a system is subjected, and withont which
the position of equilibrinm, however unstable, could not be departed
from. Nevertheless, in practice, the latitude is not very great, becaunse
some kinds of disturbance produce their effect mach more rapidly than
others. In fact, if the various disturbances be represented initially by

a,, a,, @, ..., and after a time £ by a,e®, ae®, «e®, ..., the (positive)
quantities g;, q;, g, &c., being in descending order of magnitude, it is
easy to see that, when @, o, ... are small enough, the first kind
necessarily acquires the preponderance. For example, at time ¢ the
ratio of the sccond kind to the first is 23e~®-9*, which, indepondently
a

of the value of a,: a;, can be made as smell as we please by taking ¢
great enongh. But, in order to allow the application of the analytical
expressions for so extended a time, it is generally necessary to suppose
the whole amount of disturbance to be originally extremely small.+



Let us, then, taking the axis of z along the axis of the cylinder,
suppose that at time ¢ the surface of the cylinder is of the form !

T =G FRCOSKZ....ecvrennennsseanensannaaa( L)}

where a is & small quantity variable with the time, and x = 2w\~
A being the wave-length of the original disturbance. The information
that we require will be readily obtained by Lagrange’s method, when
we have calculated expressions for the potential and kinetic energies
of the motion represented by (1).

The potential energy due to the capillary forces is a question merely
of the surface of the liqnid. If we denote the surface corresponding
(on the average) to the unit length along the axis by o, we readily find

o = 2ratdmrac’a’... e (@)

In this, however, we have to substitute for @ (which is not strictly
constant) its value obtaincd from the condition that 8, the volume
enclosed per unit of length, is given. We have

8= e 3T 6 et eeeerereeenn (3)),

whence @ = \/ 1—§ ) ceveereens e (4).
Using this in (2), we get with suffcient approximation

¢ =2V/(r8)+ 7 (x’m 1 JORTROTR 5);

or, if ¢, be the value of ¢ for the undistarbed condition,

u'—ao:%(x’a'—l}.... .................... (6).

From this we infer that,if xa>1, the surface is greater after dis-
placement than before; so that,if A < 2ra, the displacement is of such a
character that with respect to it the system is stable. We are here
concerned only with values of xa less than unity., If T, denote the
cohesive tension, the potential energy ¥V reckoned per unit of length
from the position of equilibrinm is

V=- TI%(I-—x’a’) ererenreee e (7).

‘We have now to caleulate the kinetic energy of motion. It iseasy to
prove that the velocity potential is of the form

¢ = AJy (kr)CoskZ...vvvviirrririiininnenna.(8),
J, being the symbol of Bessel’s fanctions of zero order, so that
Jy (@)= 1- + = Y e e (9)
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The coefficient 4 is to be determined from the consideration that the
outwards normal velocity at the surface of the cylinder is equal to
a cog kz, Hence

wAJy (K@) =d..ovreiiniiiieiii e, (10).
Denoting the density by p, we have for the kinetic energy the

T= ép[?wa 6 —Ldz,

expression
{' a)

or, if we reckon it in the same way as ¥ per unit of length,

P =tpmat DT 11).

ixa J, (ixa)
Thus, by Lagrange’s method, if a o %,

= L, (1=x"d) .ika.Jy (ia)
= Iy Aodd) b e n(12),

which determines the law of falling away from equilibriam for a
disturbance of wave-length \. The solutions for the various values of
A and the corresponding energlea are independent of one another; and
thus, by Fourier’s theorem, it is possible to express the condition of the
system at time £, after the communication of any infinitely small distur-
bances symmetrical about the axis. But what we are mos{ concerned
with at present is the value of ¢’ as a function of «a, and especially the
determination of that value of ra for which ¢ is a maximum. That
puch a maximnm must exist is evident a priori. Writing z for xa, we
have to examine the values of

(l—ﬂa).};‘(fm)'fn (iz) vereernraerinesrrnnesenens (18).

Expanding in powers of #, we may write, for (13),

] 4 ]
JEROS SHRL I IR AN L
1a* (1—2Y) {1 s+ sis— ons Foras e | o (14).

PV AR - L | PE TR B
or g{x’ 1ot ge — e g g gt | e (19)
Hence, to find the maximum, we obtain by differentiation
7 100 91
1—-%a'+ 2—‘#“—@7 n-.‘+2“‘333+,_. =0......o000..(16).

If the last two terms be neglected, the quadratic gives 2’ = 4914, If
this value be substituted in the small terms, the equation becomes

98928 — $2'+ 52t =0,

whence a’ = '4858...... veverrerrersenepseneansnes.(17)s



Rayleigh predicted that a charged conducting liquid drop of radius a develops
instabilities and breaks up when its charge Q exceeds the limit where Qg is the critical

charge y, € is the surface tension and dielectric constant of the liquid, respectively,
and g, is the permittivity of free space.

Or = 87/ eeoya’ Q >> Qp
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