Liquid nitrogen (LN₂)

M S Bootharaju

Date: 01/10/11

Liquid Nitrogen (LN₂) Facts

- Liquid nitrogen is a colourless clear liquid
- Density: 0.807 g/mL at it's b.p (77 K)
- Freezing point: 63 K
- Dielectric constant: 1.4
- 1 cubic foot of liquid nitrogen will expand to 696 cubic feet of 100% gaseous nitrogen at 21° C
- The nitrogen gas can displace the oxygen in the area, leading to asphyxiation
- LN₂ can cause burn
- Nitrogen was first liquefied at the Jagiellonian University on 15 April 1883 by Polish physicists, Zygmunt Wroblewski and Karol Olszewski

Production

• LN₂ is produced industrially by fractional distillation of liquid air

• Liquid air is produced by Joule-Thomson effect

Zygmunt Florenty Wróblewski

Karol Olszewski

James Joule

Thomson W

Applications

- As a coolant for CCD cameras, in EDAX detectors of SEM and TEM, etc.
- To store cells at low temperature for laboratory work
- In cryogenics
- As a source of very dry nitrogen gas
- For the immersion freezing and transportation of food products
- For the cryopreservation of blood, reproductive cells (sperm and egg), and other biological samples and materials
- As a method of freezing water pipes in order to work on them in situations where a valve is not available to block water flow to the work area
- For cooling a high-temperature superconductor to a temperature sufficient to achieve superconductivity

Precautions

- Always wear thermal protective clothing when handling refrigerated/cryogenic liquids or solids
- It is required you wear a full face shield over safety glasses, loose fitting gauntlet gloves, long sleeve shirts, full-length trousers without cuffs, and fully enclosed shoes
- Only use containers that have been designed specifically for cryogenic liquids
- Do not store in a confined space
- Do not store at temperatures above 52 °C

Appropriate Containers

Low Pressure Liquid Container Components

Low Pressure Liquid Container Components

Liquid Withdrawal Valve

Liquid is withdrawn through this valve

Pressure Gauge

Displays internal pressure of the container

Contents Gauge

A float-type liquid level gauge-indicates approximate level of liquid

Vent Valve

Primarily used in the fill process to vent the vapor space while filling. Can be used to vent unwanted pressure during storage and use

Pressure Relief Device

Protect vessel from over-pressurization

- Liquid is converted to gas at about
 2.3% per day even under ideal
 container conditions
- If the liquid is not used regularly, the vessel will be empty in a certain amount of time

Inappropriate Containers

 DO NOT use open, un-insulated or glass containers!

Emergencies

- If there is a large spill or rupture of a container, warn others in building
- Evacuate!! There may be oxygen deficiency in the area of the spill!!
- If there is injury to the body from liquid nitrogen, seek immediate medical assistance

Please be SAFE

THANKS