HPLC OF CLUSTERS

SHRIDEVI S BHAT 27/09/2014

HPLC of Monolayer-Protected Gold Nanoclusters

Victoria L. Jimenez, Michael C. Leopold,[†] Carolyn Mazzitelli, James W. Jorgenson, and Royce W. Murray^{*}

- Au nanoparticles protected with monolayers of hexanethiolate ligands and with mixed monolayers of hexanethiolate and mercaptoundecanoicacid have been chromatographically
- The stainless steel silica bonded C8 columns
- Acetone/toluene mobile phase at a flow rate of 1 mL/min (or 0.6 mL/min)
- PDA and UV vis detectors

Chromatogram (absorbance detected at 400 nm) of C6MPC. The mobile phase was 66% acetone/34% toluene at a flow-rate of 1 mL/min.

Chromatogram (absorbance detected at 400 nm) mixed monolayer MPCs. The mobile phase was 85% acetone/15% toluene at a flow-rate of 1 mL/min.

Estimation of Size for 1–2 nm Nanoparticles Using an HPLC Electrochemical Detector of Double Layer Charging

Yang Song, Victoria Jimenez, Collin McKinney, Robert Donkers, and Royce W. Murray*

Chromatograms detected by photodiode array (PDA) detector (a) and thin-layer flow cell electrochemical detector (EC) (b) for a 100 μ L injection of 10-5 M hexanethiolate MPCs (C6 MPCs) with 10 mM tetrabutylammonium perchlorate. The mobile phase was 66% acetone and 34% toluene. Part 1a was taken at 400 nm wavelength for the best resolution; part b was taken at 500 mV vs Ag/AgCl cell potential.

Application of HPLC and MALDI-TOF MS for Studying As-Synthesized Ligand-Protected Gold Nanoclusters Products

Yan Zhang,^{†,§} Shaomin Shuang,^{*,†} Chuan Dong,[†] Chung Keung Lo,[‡] Man Chin Paau,[‡] and Martin M. F. Choi^{*,‡}

- Samples of polydisperse gold nanoclusters (AuNCs) protected with monolayers of N-acetyl-L-cysteine (NAC) have been chromatographically separated
- C18 column (250 mm × 4.6 mm i.d. stainless steel, with 5 μm C18 bonded silica 130 Å pore size)
- A gradient elution program was used at a flow rate of 0.70 mL/min, in which eluent I was 50 mM Bu4N+F- and 2.0 mM NaCl in 65% v/v MeOH and eluent II was pure MeOH. The elution program was applied as follows: 100% I (0% II) for 40 min, linearly decreased to 80% I from 40 to 70 min, maintained at 80% I from 70 to 90 min, linearly decreased to 50% I from 90 to 120 min, and kept at 50% I from120 to 150 min.
- PDA, fluorescence and electrochemical detectors have been used

Chromatographic separation of a 3000 mg/L polydisperse AuNC sample. Curves a (black) and b (red) are absorbance chromatograms monitored by a PDA at 400 and 250 nm, respectively, and curve c (green) is a fluorescence chromatogram monitored by a fluorescence detector at excitation/ emission 400/680 nm.

Probing Histidine-Stabilized Gold Nanoclusters Product by High-Performance Liquid Chromatography and Mass Spectrometry

Yan Zhang,^{†,∥} Qin Hu,[‡] Man Chin Paau,[‡] Shunping Xie,^{‡,⊥} Pengfei Gao,[†] Wan Chan,^{*,§} and Martin M. F. Choi^{*,‡}

- Gold nanoclusters stabilized with histidine (His-AuNCs) with core diameter smaller than 1 nm are separated by HPLC
- C18 column (150 mm × 4.6 mm i.d. stainless steel, with 5 μm C18 bonded silica 300 Å pore size)
- The mobile phase consisted of ammonium acetate in water (pH 5) and MeOH. Flow rate 0.7 mL/min. A solvent program was applied as follows: 100% A for 5.5 min, linear decreased to 90% A from 5.5 to 6.5 min, maintained at 90% A from 6.5 to 9.0 min, linear decreased to 80% A from 9.0 to 10 min, maintained at 80% A from 10 to 12 min, linear decreased to 60% A from 12 to 13 min, and kept at 60% A from 13 to 16 min.
- PDA detector

Chromatographic separation of 15.0 mg/mL His- AuNCs sample under gradient elution. Curve a (black) is water injection chromatogram and curves b (red) and c (blue) are 15.0 mg/mL histidine and His-AuNCs chromatograms monitored at 250 nm, respectively. Chromatograms are offset for clarity. The inset displays the separation of Peak 1 into two peaks (labeled as 1a and 1b) at pH 7.0.

Separation of Precise Compositions of Noble Metal Clusters Protected with Mixed Ligands

Yoshiki Niihori,[†] Miku Matsuzaki,[†] Thalappil Pradeep,^{*,‡} and Yuichi Negishi^{*,†}

dx.doi.org/10.1021/ja4009369 | J. Am. Chem. Soc. 2013, 135, 4946-4949

Chromatogr ams of $PdAu_{24}(SC_{12}H_{25})_{18-n}(SBB)_n$ (n = 6–16) at each gradient program. The peak observed at 3.0 min was confirmed to be due to the solvent, THF.

Comparison between the MALDI mass spectrum and chromatogram for $PdAu_{24}(SC_{12}H_{25})_{18-n}(SC_{2}H_{4}Ph)_{n}$.

Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters[†]

Yoshiki Niihori,^a Miku Matsuzaki,^a Chihiro Uchida^a and Yuichi Negishi^{*ab}

Entry	SR ₁	MW _{av} ^a	SR ₂ /SeR ₂	MW _{av} ^a
1	$SC_{12}H_{25}$	201.39	SC_8H_{17}	145.29
2	$SC_{12}H_{25}$	201.39	SC_6H_{13}	117.23
3	$SC_{12}H_{25}$	201.39	SC_4H_9	89.18
4	$SC_{12}H_{25}$	201.39	SCH ₂ Ph ^t Bu ^b	179.30
5	$SC_{12}H_{25}$	201.39	SCH ₂ PhBr ^c	202.09
6	$SC_{12}H_{25}$	201.39	SC_2H_4Ph	137.22
7	SC_2H_4Ph	137.22	$SC_{14}H_{29}$	229.45
8	SC_2H_4Ph	137.22	$SC_{10}H_{21}$	173.34
9	SC_2H_4Ph	137.22	SC_6H_{13}	117.23
10	SC_2H_4Ph	137.22	SeC12H25	248.29
11	$SC_{12}H_{25}$	201.39	SeC12H25	248.29

Table 1 Ligand combinations applied in this study

Nanoscale, 2014, 6, 7889-7896

Chromatogram obtained with a linear gradient and chromatogram obtained with a step gradient for $Au_{24}Pd(SC_{12}H_{25})_{18-x}(SC_{10}H_{21})_x$ (x = 12–18)

THANKYOU