Instrumental Technique

The DAR 400 X-Ray Source

Sinstrument working on Fundamental technique and basic pi

Technique

When highly energetic electron beam hit metals surface X-rays will be produced

Principle: PHOTO ELECTRIC EFFECT

EINSTEIN'S PHOTOELECTRIC EQUATION

 $h_{X}(X-rays) = Threshold Energy(Binding Energy) + kinetic Energy(1/2mv2)$

I wish to remind one point

This basic principle is useful, to provide experimental proof for theoretical value(Plank's constant=h)

The DAR 400 X-Ray Source Features

- •The DAR 400 is a twin-anode high intensity x-ray (flood)source
- •High x-ray flux for fast sample analysis
- Linear drive for optimum working distance (optional)

Fully software controlled

Omricon X-ray 554 control(software)

Technical Data DAR 400

Maximum X-ray power: Al: 400 W /

Mg: 300 W

Anode voltage: 0.3 - 15

kV

mΔ

Filament emission: 0 - 27

Tungsten cathode is *used* in *x-ray tube* because of it's high melting point of 3410°C

Mg Anode : $K\alpha(X-ray)$, Photon Energy=1253.6 eV Al Anode : $K\alpha(X-ray)$, Photon Energy=1483.6 eV

Tungsten cathode coated with Thoria(ThO2)

The anode internal design creates turbulent water flow conditions,

- 1. To prevent evaporating of sample
- 2.To minimize sample heating via the source.
- The X-rays generated at the anode surface pass through a thin Aluminium window
- 1. This is designed to maintain a partial vacuum barrier between source and sample.
- 2.The window allows
- 2(a). The source to be differentially pumped
- 2(b).To reduce Bremsstrahlung radiation.

Future plan Monochromatic Alignment(for X-Ray Source)

