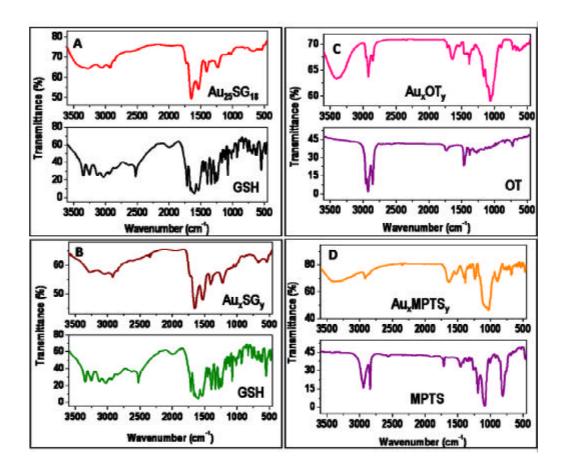
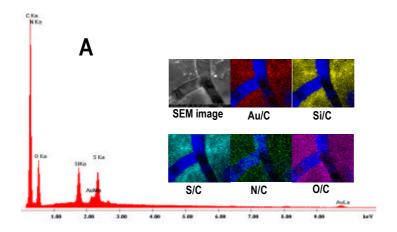
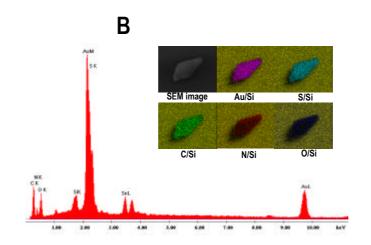


© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009


Clusters from Clusters: Bright, NIR Emitting Au₂₃ from Au₂₅-Charecterisation and Applications Including Bio-Labeling

M. A. Habeeb Muhammed^a, Pramod Kumar Verma^b, Samir Kumar Pal^{b*}, R. C. Arun Kumar^c, Soumya Paul^c, R. V. Omkumar^{c*} and T. Pradeep^{a*}


^aDST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument Facility,
Indian Institute of Technology Madras, Chennai - 600 036, India


^bUnit for Nanoscience and Technology, Department of Chemical, Biological and Macromolecular Sciences,
Satyendra Nath Bose National Centre for Basic Sciences,
Block JD, Sector III, Salt Lake, Kolkata 700 098, India.

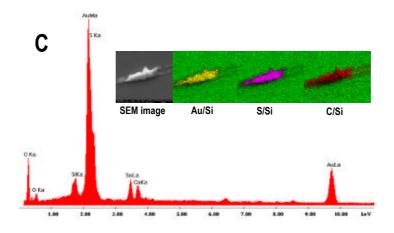
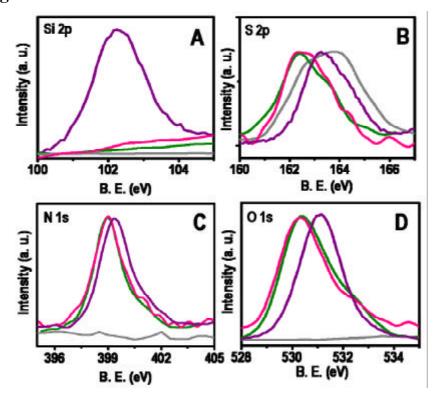

^cDepartment of Neurobiology, Rajiv Gandhi Center for Biotechnology Thiruvananthapuram, 624000 India *E-mail: <u>pradeep@iitm.ac.in</u>

Figure S1. Comparison of the FT-IR spectra of the clusters and the corresponding ligands used for etching, with the parent $Au_{25}SG_{18}$.



Sample	Element	% of element	% of element	Molecular formula	
		(Experimental)	(Calculated)		
Au _x MPTS _y	N	03.85	03.68		
	С	15.29	15.03	Au ₂₂ (MPTS) ₁₀ (SG) ₇	
	Н	02.71	02.62		
	S	06.31	06.81		
Au _x SG _x	N	07.75	07.53		
	С	20.68	21.52	Au ₂₃ SG ₁₈	
	Н	03.45	02.87		
	S	05.48	05.74		
Au _x OT _y	N	00.00	00.00		
	С	22.01	21.78	Au ₃₃ OT ₂₂	
	Н	04.15	03.86		
	S	07.18	07.26		

Figure S2. EDAX spectra and corresponding elemental mappings of A) Au_xMPTS_y , B) Au_xSG_y and C) Au_xOT_y . Element C in data set A is from the carbon tape used as the substrate. The elemental mappings are overlayed with carbon for clarity. Elements Si, Sn and O in B and C in data sets B and C are from the conducting glass surface used as the substrate. The elemental mappings are overlayed with silicon for clarity. Table shows CHNS elemental analysis data of the three clusters.

Figure S3. A) Comparison of XPS spectra due to the core level photoemission from Si2p, S2p, N1s and O1s of Au₃₃ (grey trace), Au₂₅ (green trace), Au₂₃ (pink trace) and Au₂₂ (purple trace).

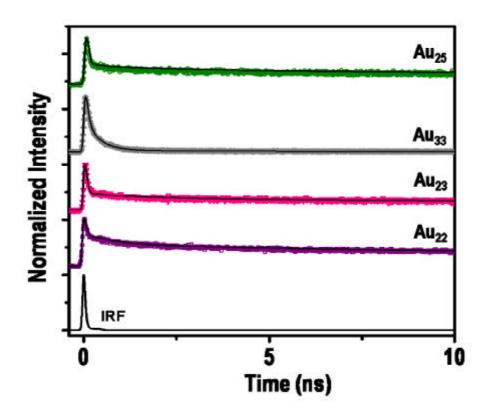
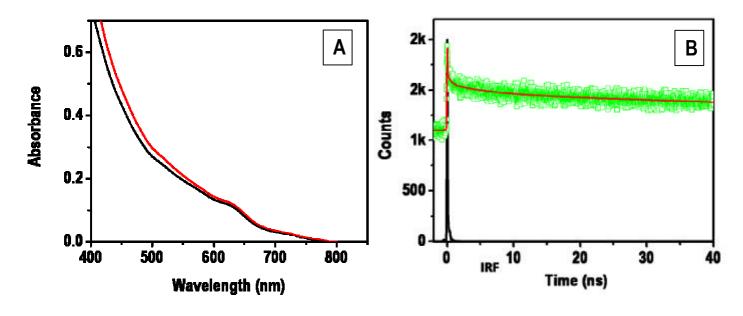
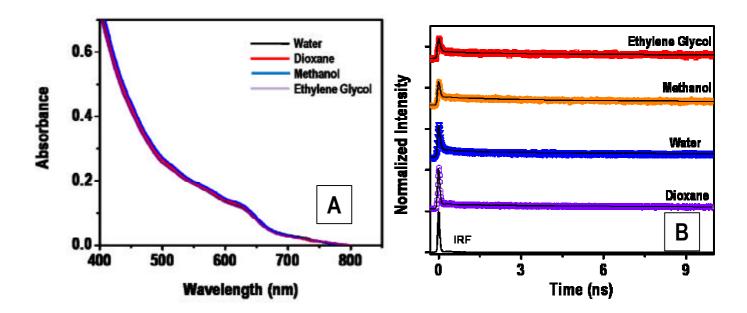




Figure S4. Fluorescence decay pattern of Au₂₅, Au₃₃, Au₂₃, and Au₂₂ collected at 630 nm.

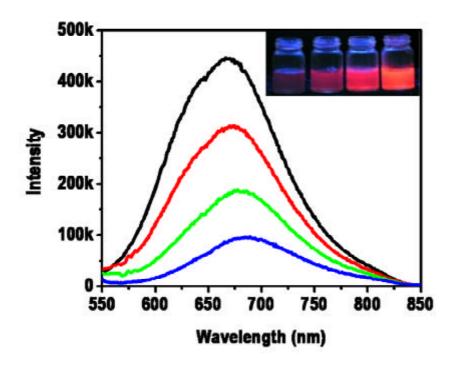
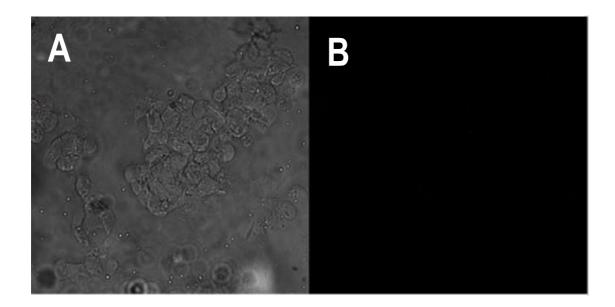

Solvent	t ₁ (ps)	%	t ₂ (ns)	%	t ₃ (ns)	%
Toluene	34	82.8	4.11	4.3	80.35	12.9
Water	39	92.4	2.41	3.6	68.55	3.9

Figure S5. A) Optical absorption spectra of Au_{23} before (red trace) and after (black trace) phase transfer. B) Fluorescence decay of Au_{23} after phase transfer. Table tabulates the life time values of the cluster before and after phase transfer.



Solvent	t ₁ (ps)	%	t ₂ (ns)	%	t ₃ (ns)	%
Ethylene Glycol	47	86.5	2.67	5.5	70.06	7.9
Methanol	36	87.6	3.27	5.8	62.91	6.6
Water	39	92.4	2.41	3.6	68.55	3.9
Dioxane	16	98.0	5.07	1.1	31.63	0.9

Figure S6. A) Optical absorption spectra of Au_{23} in dioxane, water, methanol and ethylene glycol. B) Fluorescence decay of Au collected at 630 nm in various solvents. Table tabulates the life time of the cluster in various solvents.

Figure S7. Plot of fluorescence intensity of Au_{23} cluster in water-DMSO mixture starting from pure water (blue line) to 1:1 (green line), 1:2 (red line) and 1:3 (black trace) water-DMSO mixtures. Inset shows the photographs of the corresponding solutions under UV light irradiation.

Figure S8. Bright field (A) and fluorescence (B) images of HepG2 cells stained with unconjugated Au_{23} clusters. No fluorescence was observed from the cells after washing.