Supporting Information for the article:

Bending and Shell Formation of Tellurium Nanowires Induced by Thiols

T. S. Sreeprasad, A. K. Samal and T. Pradeep*

DST Unit on Nanoscience (DST-UNS), Department of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, Chennai 600 036, India

*For correspondence, Email: pradeep@iitm.ac.in Fax: + 91-44 2257-0545

Contents:

Supporting information 1: UV/vis spectral changes of Te NW with molecules having various functionalities

Supporting information 2: Comparison of UV/vis spectra of free thiol and Te₁ sample containing thiol

Supporting information 3: EDS spectrum and elemental maps of Te1

Supporting information 4: UV/vis spectra of as-prepared Te NW, Te1 and Te2.

Supporting information 5: EDS spectrum and elemental maps of Te₂

Supporting information 6: HRTEM image showing defects

Supporting information 7: HRTEM image of a single pristine Te NW

Supporting information 8: Consecutive FFTs from the HRTEM images

Supporting information 9: TEM micrographs of a single Te NW with FFT, SAED and IFFT

Supporting information 10: XPS spectra of as-prepared Te NW, Te1 and Te2

Supporting information 11: HRTEM image of a bent nanowire

Figure S1. UV/vis spectral changes of Te NW after the addition of different concentrations of A) cystiene, B) IPA, C) butanol and D) SA.

Figure S2. UV/Vis spectra of (a) 0.05 mM DMSA and (b) Te NW sample containing 0.05 mM DMSA showing that there is a clear difference in the spectra.

Figure S3. EDS spectrum and elemental maps of the pristine Te NW sample after one centrifugationredispersion cycle (Te₁). The elemental maps are moved slightly to the left in comparison to the bring field image.

Figure S4. UV/Vis spectral changes of Te NW sample upon centrifugation redispersion cycles. (a) Asprepared Te NW without centrifugation, (b) and (c) after 1 and 4 rounds of centrifugation redispersion cycles. We can see that peak I is smeared in the as-prepared sample.

Figure S5. EDS spectrum and elemental maps of the pristine Te NW sample after four rounds centrifugation-redispersion cycles (Te₂). The elemental maps are moved slightly in comparison to the bright field image.

Figure S6. A) HRTEM image showing the defects over a large region of a single bent Te NW. B) Lattice resolved TEM image of the portion marked by yellow rectangle in B. We can clearly see a raw of atoms missing near the bend, denoted by arrows. C) Lattice resolved TEM image of the portion marked by green rectangle in B, clearly showing a large number of defects.

Figure S7. HRTEM image of a single pristine Te NW. a_1 to a_{14}) Consecutive lattice resolved HRTEM images taken along the length of the NW, starting from the tip, showing a defect-free surface throughout the NW. Scale bar in each image 5 nm. b_1 to b_{14}) Consecutive corresponding FFTs generated from the HRTEM images given in Figure a_1 to a_{14} emphasizing a defect free surface although the NW.

a ₆	a ₇	a ₁₃
a ₅	a ₈	a ₁₄
a₄	a ₉	a ₁₅
a ₃	a ₁₀	a ₁₆
a ₃ a ₂	a ₁₀ a ₁₁	a ₁₆ a ₁₇

Figure S8. a_1 to a_{18}) Consecutive corresponding FFTs generated from the HRTEM images given in Figure 11 a_1 to a_{18} in main manuscript showing the defects around the bend.

Figure S9. A) TEM micrograph of a single Te NW B) Lattice resolved image and C) IFFT image from a portion of Te NW showing the perfect single crystalline nature. Inset i and ii FFT and SAED pattern from the same area showing the single crystalline nature.

Figure S10. XPS spectra in the Te 3d region for (a) as-prepared Te NW, (b) Te₁ and (c) Te₂.

b ₁	b ₇	b ₁₃	b ₁₉	b ₂₅
b ₂	b ₈	b ₁₄	b ₂₀	b ₂₆
b ₃	b ₉	b ₁₅	b ₂₁	b ₂₇
b ₄	b ₁₀	b ₁₆	b ₂₂	b ₂₈
b ₅	b ₁₁	b ₁₇	b ₂₃	b ₂₉
b ₆	b ₁₂	b ₁₈	b ₂₄	b ₃₀

Figure S11. HRTEM image of a bent nanowire and reconstructed image of a bent nanowire from consecutive lattice resolved images taken from one end to the other end along the length of nanowire. b_{30}) consecutive lattice resolved images taken from one end to the other end along the length of same nanowire. Scale bar in each lattice resolved image is 5 nm.