Pristine and Hybrid Nickel Nanowires: Template-, Magnetic Field-, and Surfactant-Free Wet Chemical Synthesis and Raman Studies

K. R. Krishnadas, P. R. Sajanlal, and T. Pradeep* DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036, India *Address correspondence to pradeep@iitm.ac.in Fax: + 91-44 2257-0545

Supporting Information 1

Figure S1. EDAX spectrum of the nickel nanowires.

Details of Ni nanowire synthesis at different Ni^{2+} concentrations: Each synthesis was carried out using 7.5 mL of ethylene glycol and 0.5 mL of hydrazine at 120 °C.

Ni ²⁺ concentration	Average length	Average diameter	λ_{max}
(mM)	(µm)	(nm)	(nm)
1.25	1.50-2.00	60±4	592
5.00	3.00-3.50	100±5	670
10.00	5.00-6.00	130±7	790

Table 1: Various concentrations of Ni²⁺ used for Ni NW synthesis, dimensions of the NWs formed, and their optical absorption maxima.

Details of Ni nanowire synthesis at different temperatures: Each synthesis was carried out with 10 mM of Ni^{2+} in 7.5 mL of ethylene glycol using 0.5 mL hydrazine.

Temperature (^o C)	Average length	Average diameter	λ_{max}
	(µm)	(nm)	(nm)
90	20.00-25.00	180±7	NIR
120	5.00-6.00	130±5	820
160	0.50-1.50	100±4	625

Table 2: Different temperatures used for Ni NW synthesis, their dimensions

 and optical absorption features of the Ni NWs.

Figure S2. Large area SEM images and corresponding images of single Ni NWs synthesized at 90 $^{\circ}$ C (A and B), 120 $^{\circ}$ C (C and D), and 160 $^{\circ}$ C (E and F).

Figure S3. SEM images of pristine nickel nanowires synthesized using 80 μ L (A), 200 μ L (B) and 500 μ L of hydrazine hydrate, showing the changes in surface morphology.

Supporting Information 6

Figure S4. Spot EDAX spectrum of Te-coated Ni nanowires showing the intensities of Te L and Te M.

Figure S5. EDAX spectrum of ZnO-coated Ni nanowires showing the intensities of Zn K and Zn L.