Ultraviolet photoelectron spectroscopy of the hydrogen bonded hetero-dimer H$_2$S*$\cdot\cdot\cdot$HCl*

S. P. ANANTHAVEL,† T. PRADEEP‡ and M. S. HEGDE†
† Solid State and Structural Chemistry Unit and ‡CSIR Centre of Excellence in Chemistry, Indian Institute of Science, Bangalore 560012, India

Abstract—The He I photoelectron spectrum of the hydrogen bonded hetero-dimer H$_2$S*$\cdot\cdot\cdot$HCl shows two vertical ionization energies at 10.91 and 12.16 eV. Ab initio MO calculations reveal that these features are due to the sulphur and chlorine lone pair ionizations respectively. Results show that while the ground ionic state is repulsive the first excited ionic state is strongly bound. The photoelectron spectrum of the diethyl sulphide*$\cdot\cdot\cdot$HCl complex is similar to that of H$_2$S*$\cdot\cdot\cdot$HCl

INTRODUCTION

ULTRAVIOLET photoelectron spectroscopy (UVPES) has been used extensively for the study of electron states of molecular complexes, hydrogen bonded dimers and van der Waals molecules [1]. The complex between H$_2$O and HCl is one of the simple examples of hydrogen bonded hetero-dimeric species. Extensive experimental investigations have been carried out on this dimer to yield its structural and spectroscopic properties [2–4]. Theoretical calculations have also been performed on this dimer [5]. The complex has a fairly large interaction energy, the binding energy at the MP2/6-31G(2d, p) level being 27.6 kJ mol$^{-1}$. The H$\cdot$$\cdot$$\cdot$H bond is nearly linear, with a hydrogen bond length of 3.22 Å. The electronic structure of H$_2$O*$\cdot$$\cdot$$\cdot$HCl has not been studied experimentally. However, there are reports on the He I photoelectron spectra of the complexes of HCl with dimethylether [6] and diethylether [7]. The oxygen lone pair is stabilized by \sim0.6 eV and the chlorine lone pair is destabilized by \sim0.8 eV on dimer formation. While the electrostatic effect is responsible for the shift in the ether orbitals, charge transfer and electronic relaxation cause the shift of the chlorine lone pair.

The analogous hydrogen bonded dimer, H$_2$S*$\cdot\cdot\cdot$HCl, has not been investigated in detail. The dimer has a C$_t$ structure with a linear S*$\cdot$$\cdot$$\cdotH\cdot$Cl distance of 3.809 Å [8]. The geometries of the constituents do not undergo any significant change on hydrogen bond formation. The binding energy of the complex is 20.7 kJ mol$^{-1}$ at the MP2/6-31G(2d, p) level. The dispersion energy contribution to the interaction energy is much larger than in H$_2$O*$\cdot$$\cdot$$\cdot$HCl. As part of our effort to investigate the electronic structures of weak molecular complexes and hydrogen bonded molecules [9–12], we have studied the photoelectron spectrum of H$_2$S*$\cdot$$\cdot$$\cdot$HCl by using a molecular beam photoelectron spectrometer. It was our intention to see whether there is any proton transfer in the ionic states. The study has enabled us to obtain the first two ionization energies of the dimer as well as the dissociation energies of the ionic states. We see that while the ground ionic state is repulsive the first excited ionic state is strongly bound. We have also studied the diethyl sulphide*$\cdot$$\cdot$$\cdot$HCl complex for comparison.

EXPERIMENTAL

The photoelectron spectra were measured with a double chamber photoelectron spectrometer fabricated indigenously for the study of weak molecular interactions [13]. Briefly, the spectrometer consists of a nozzle source, a 154 mm mean diameter hemispherical analyser, a channeltron detector and a data acquisition system. Glass nozzles of two different diameters (0.15 and 0.10 mm) were used in the experiment. Laboratory made HCl and H$_2$S gases subjected to repeated freeze–pump–thaw cycles were collected in glass bulbs at about 1 atm pressure. Gas mixtures of

* Contribution No. 833 from the Solid State and Structural Chemistry Unit.
different compositions were prepared in a vacuum line and were collected in glass bulbs and they were connected to the spectrometer through a variable leak valve. A high pressure Pirani gauge monitors the stagnation pressure behind the nozzle. The UVPE spectrum was studied in the 10–20 Torr stagnation pressure range. The monomer spectra were obtained at the lowest stagnation pressure. The spectrometer resolution was 50 meV for 5.3 eV kinetic energy electrons. Each spectrum consisted of 1000 data points acquired by a personal computer.

MO calculations were carried out at the 6-31G* level using the GAUSSIAN 86 system of programs [14]. Calculations were carried out on the ground neutral and the ionic states. In our calculations, the geometries of both the dimer and the monomer were fully optimized. For the dimer, we have considered the C_2 structure since both experimental and theoretical studies point toward this conclusion.

RESULTS AND DISCUSSION

In Fig. 1, we show the HeI photoelectron spectra of a mixture of H$_2$S and HCl in the 10–20 Torr nozzle stagnation pressure range. Each spectrum is normalized to the intensity of the HCl $^2\pi$ band at 12.8 eV. The spectrum marked a is due to a neat mixture showing bands at 10.48, 13.25 and 15.35 eV due to H$_2$S and 12.80 and 16.3 eV due to HCl. The bands of H$_2$S are due to 2B_1, 2A_1 and 2B_2 in order of increasing ionization energy (IE) [15]. The bands at 12.80 and 16.3 eV are due to HCl corresponding to the $^2\pi$ and $^2\Sigma$ states respectively. As the stagnation pressure increases, we see the emergence of two bands at 10.9 and 12.1 eV. These new bands are attributed to the H$_2$S···HCl dimer on the basis of the following considerations. (1) The nozzle stagnation pressure is much smaller than that used in other investigations. (2) The concentration of the
higher clusters would be rather small. (2) As the stagnation pressure was increased above 25 Torr, the new features shifted to still lower IEs, suggesting the formation of heavier clusters. (3) The IEs of the new features are not due to (HCl)_2 [10] or (H_2S)_2 [11]. The only other possible species in the expansion is the hetero-dimer between the two, namely H_2S · · · HCl. We show an expanded spectrum of the mixture in Fig. 2, which depicts the spectra of mixtures of different compositions at the same stagnation pressure. The intensity ratio of the n_C band of HCl at 12.8 eV to the n_s band of H_2S at 10.48 eV is a measure of their relative concentrations. This ratio was varied from 1.6 to 3.8 (curves b–d), but the new features remained the same. Thus, we conclude that the features with

Table 1. Vertical ionization energies, calculated orbital energies and assignments of the H_2S · · · HCl hetero-dimer

<table>
<thead>
<tr>
<th>I_e (eV)</th>
<th>ε (eV)</th>
<th>MO</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.91</td>
<td>10.83</td>
<td>14a'</td>
<td>n_s</td>
</tr>
<tr>
<td>12.67</td>
<td>13a'</td>
<td>n_C</td>
<td></td>
</tr>
<tr>
<td>12.68</td>
<td>4a^*</td>
<td>n_C</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>13.97</td>
<td>12a'</td>
<td>π_{g1u}</td>
</tr>
<tr>
<td>—</td>
<td>16.78</td>
<td>3a^*</td>
<td>π_{u1u}</td>
</tr>
<tr>
<td>—</td>
<td>16.84</td>
<td>11a'</td>
<td>σ_{HCl}</td>
</tr>
</tbody>
</table>

Fig. 2. HeI photoelectron spectra of mixtures of H_2S and HCl at different compositions. Curve a is due to a 1:1 mixture. New features are indicated by arrows.
Fig. 3. He I photoelectron spectra of (C₂H₄)₂S and a mixture of (C₂H₄)₂S and HCl. The spectrum of the mixture shows the presence of additional features due to the hetero-dimer, (C₂H₄)₂S···HCl.

the vertical IEs of 10.91 and 12.16 eV are due to the H₂S···HCl hetero-dimer. The adiabatic IEs corresponding to these features are 10.50 and 11.76 eV respectively.

Calculations were carried out at the SCF/6-31G* level on the H₂S···HCl dimer. In the optimized geometry, the S···H·Cl linkage is nearly linear, with an S···H distance of 3.005 Å. The geometrical parameters of the constituents have not changed by any significant extent on complexation. In the optimized geometry, the b_i orbital of H₂S is involved in bonding. Koopmans' IE for the HOMO (14_a) is 10.83 eV, corresponding to the in-plane sulphur lone pair. The calculated vertical IE for the 1_bA' ground ionic state is 9.1 eV at the ASCF level. Although there is a considerable difference between the experimental and the ASCF values, the calculated vertical IE would come very close to the experimental value once correlation is included, as shown in the case of the H₂S dimer [11]. An estimate of the adiabatic IE for this state could not be obtained since the structure undergoes dissociation to H₂S⁺ and HCl. The experimental first vertical IE is very close to Koopmans' IE. We assign the first feature with a vertical IE of 10.91 eV to the 1_bA' state. The sulphur lone pair is stabilized by 0.43 eV from the free H₂S value as a result of hydrogen bonding. The magnitude of stabilization is similar for the H₂S dimer, where the value is 0.27 eV.

Koopmans' IE for the second orbital is 12.67 eV due to the chlorine lone pair. The second chlorine lone pair is very close in energy (12.68 eV). Koopmans' IEs of the dimer may be compared with the HCl monomer (12.93 eV), where the chlorine lone pairs are degenerate. The theoretical value of the destabilization is 0.25 eV, while the experimental shift is 0.64 eV. The magnitude of destabilization is comparable to similar hydrogen bonded molecules such as the HCl dimer [10]. We assign the second photoelectron feature at 12.16 eV to this orbital. The experimental vertical IEs, orbital energies and assignments are listed in Table 1. The results support an electron donor–acceptor interaction in the dimer, leading to the splitting of the donor and acceptor IEs to higher and lower values respectively.
Using the UVPES data, we have calculated the dissociation energies of the ionic states from the equation \(D = D_0 + I_{E_0} - I_{E_1} \), where \(D \) and \(D_0 \) are the dissociation energies of the ionic and the neutral states, respectively, while \(I_{E_0} \) is the adiabatic IE of the state to which the ionic state dissociates and \(I_{E_1} \) is that of the ionic state in question. Although there is no estimate of the dissociation energy of the complex, we can assume it to be close to that of similar complexes. Taking a dissociation energy of 0.06 eV for the ground neutral state [which is close to the values for \((\text{H}_2\text{S})_2\) and \((\text{HCl})_2\)] and adiabatic IEs of 10.46 and 12.75 eV for \(\text{H}_2\text{S} \) and \(\text{HCl} \) respectively, it turns out that the \(1^2A' \) state is repulsive. The dissociation energy of the \(2^2A' \) state (with respect to \(\text{H}_2\text{S} \) and \(\text{HCl}^+ \)) is 1.05 eV.

The photoelectron spectrum of the diethyl sulphide--HCl hetero-dimer is similar to that of \(\text{H}_2\text{S} \cdot \cdot \cdot \text{HCl} \). In Fig. 3 we give the spectra of diethyl sulphide and a mixture of HCl and diethyl sulphide. The spectrum of the mixture shows the presence of two new features due to the hetero-dimer. These features, at 9.7 and 12.0 eV, are due to the hetero-dimer and can be assigned to the \(n_3 \) and \(n_{1s} \) orbitals respectively.

Acknowledgements—The authors thank Professor C. N. R. Rao for valuable suggestions. One of the authors (T.P.) thanks the Council of Scientific and Industrial Research for financial support.

REFERENCES