Luminescent, Freestanding Composite Films of $Au_{15} \text{ for Specific Metal Ion Sensing}$ Anu George, [†] E. S. Shibu, [†] Shihabudheen M. Maliyekkal, ^{†, ‡} M. S. Bootharaju, [†] and T. Pradeep*, [†] †DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India ‡School of Mechanical and Building Sciences, VIT University, Chennai Campus, Chennai-600 048, India *Email: <u>pradeep@iitm.ac.in</u> (T. Pradeep) **Figure S1.** Excitation and emission spectra of Au₁₅ solution. Inset shows the photograph of Au₁₅ in solution phase under visible light. A photograph in UV light is given in Figure 3. **Figure S2.** Photoluminescence spectra of parent chitosan film with and without Cu²⁺ ion (5 ppm). Peaks in UV and visible regions correspond to excitation and emission, respectively. The feature indicated with (*) is due to an unidentified impurity. **Figure S3.** EDAX spectrum of the composite film exposed to CuCl₂. Inset shows the SEM and EDAX image of the composite film which shows uniform elemental distribution of copper, gold, sulfur and chlorine in the exposed composite film. **Figure S4.** XP spectrum of $Au_{15}@SG-\beta CD+Hg^{2+}$ sample in Hg 4f region. A peak corresponds to Au 5s is noticed whereas no Hg 4f feature is seen. **Figure S5.** Photoluminescence spectra of the composite film exposed to different salts of Cu²⁺ ion in 1 ppm concentration. Peaks in UV and visible regions correspond to excitation and emission, respectively. Chloride, sulphate, acetate salts of copper shows a similar shift in their emission wavelength. The feature indicated with (*) is due to an unidentified impurity. **Figure S6.** A comparison of the photoluminescence spectra of the composite film with chloride salt of Cu²⁺ and Cu¹⁺ metal ions at 1 ppm concentration. Peaks in UV and visible regions correspond to excitation and emission, respectively. The feature indicated with (*) is due to an unidentified impurity.