Supplementary Data

Translocation of Uranium from Water to Foodstuff While Cooking

Krishnapriya K. C., * Ananya Baksi,* Swathi Chaudhari,* Soujit Sen Gupta and T. Pradeep*

DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of

Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, India

Email: Pradeep@iitm.ac.in, Fax: 91-44-2257-0545/ 0509

^{*}Contributed equally

Content

S/N	Description	Page Number
S1	Change in uranium concentration due to adsorption on Teflon beaker	2
S2	XPS survey spectrum of rice cooked in high concentration of uranium	3
S 3	IR spectra of glucose, mannose and their uranyl-bound adduct	4

Fig. S1: Change in uranium concentration in the uranyl nitrate solution with time showing that Teflon beakers 1 and 2 used for all cooking and soaking experiments do not absorb uranium from the solution. Experiments were conducted at 80 $^{\circ}$ C.

<u>Supplementary Data 2</u>

Fig. S2: XPS survey spectrum of rice cooked in uranium contaminated water.

Supplementary Data 3

Fig. S3: IR spectra of glucose, mannose and their uranyl-bound adducts. Some of peaks at 3140-3460 and 990-1130 cm⁻¹ are saturated.