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Abstract: The supporting information includes 11 figures, 4 movies, and further simulation details. Figure 

S1 shows the process of one droplet being sucked into the mass spectrometer. Figures S2 and S3 display 

MS/MS data for selected analytes examined in the positive and negative ion modes ionized by paper 

spray (PS), nano-electrospray ionization (nESI), and zero volt PS. Figures S8 – S10 are supporting 

information for the simulations developed in this paper. A in depth discussion of the postulated ionization 

mechanism for zero volt paper spray is provided. A brief discussion of figure S11 is also provided. 

 

 

Supplementary Figures: 

Figure S1: Consecutive camera images of 0V paper spray process. 

Figure S2: MS/MS of selected positive mode analytes using PS, nESI, and zero volt PS 

Figure S3: MS/MS of selected negative ion mode analytes using PS, nESI, and zero volt PS 

Figure S4: 0V paper spray of aromatic heterocycles in neutral and acidic pH 

Figure S5: 0V paper spray of amines with different basicities 

Figure S6: Comparison of 0 V and 1 V paper spray 

Figure S7: Analysis of mixtures selected compounds using nESI, PS, and zero volt PS. 

Figure S8: Weber number for methanol droplets under different gas flows 

Figure S9: Simulated number of molecules ionized vs analyte concentration at various surface activities 

Figure S10: Simulated ionization efficiency vs analyte concentration at various surface activities 

Figure S11: Experimental results of binary mixtures and calculated relative surface activity results.  

 

Supplementary Movies: 

Movie S1: Video image of the analysis of 50 ppm tributylamine in methanol feed continuously onto the 

paper at 15 µL/min. 

Movie S2: Video image of the analysis of 50 ppm tributylamine in methanol feed continuously onto the 

paper at 15 µL/min at ¼ speed. 

Movie S3: Video image of the analysis of 50 ppm tributylamine in methanol added in 5-7 µL aliquots.  

Movie S4: Video image of the analysis of 50 ppm tributylamine in methanol added in 5-7 µL aliquots at ¼ 

speed. 
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Additional Experimental Details 

Chemicals and Materials 

Diphenylamine and adenine were purchased from Merck Ltd., Mumbai, India. Guanine was purchased 

from Spectrochem Pvt. Ltd., Mumbai, India. Diisopropylamine and methylamine were purchased from SD 

Fine Chem. Ltd, Mumbai, India. Thymine was purchased from Titan Biotech LTD., New Delhi, India. 

Pyridine was purchased from Qualigens Fine Chemicals, India. Tetramethyl-1,4-butanediamine was 

purchased from Sigma Aldrich, India. All compounds purchased in India were dissolved in HPLC grade 

methanol (Sigma Aldrich, India). All other samples were purchased from Sigma (St. Louis, MO, USA). 

 

 

Additional Simulation Details 

Aerodynamic Breakup 

When sufficient solvent is applied, droplets are pulled from the filter paper by the suction of the 

instrument. Typically a few µL of sample is added before each suction event suggesting that the 

initial droplets will be at least of similar volume. The droplets, initially at zero velocity enter a high 

speed gas flow (170 m/s) due to the suction of the inlet and experience an aerodynamic force.
3
 This 

force causes the droplet to simultaneously accelerate and breakup. The droplet will continue to 

breakup while its Weber number is larger than 10.
4,5

 The weber number is defined by  

�� =	����� − �
��

� 	(1) 
where ρg  is the gas density, Vg is the gas velocity, Vd is the droplet velocity, Dd is the diameter of 

the droplet, and σ is the surface tension of the solvent.
4
 This suggests that droplets will primarily 

breakup due to aerodynamic forces until they either accelerate to the velocity of the surrounding 

gas or reach a certain size. There is evidence from charge detection mass spectrometry that water 

droplets produced by either sonic spray ionization or vibrating orifice aerosol generator reach a 

common size of about 2.5 µm after traveling through the inlet.
5
 This is also approximately the 

average size measured for kV PS mass spectrometry.
6
 This suggests that methanol droplets should 

undergo a similar phenomenon, but in fact could be smaller due to the reduced surface tension of 

methanol as compared to water. Using this information, it is assumed that droplets may have 

diameters between 1-4 µm after aerodynamic breakup (Figure S8). 

Initial Droplet Conditions for Evaporation and Columbic Fission Cycles 

Aerodynamic breakup determines that droplets will have diameters between 1 and 4 µm and this 

serves as the initial diameter of droplets modeled in this section. The number of analytes in a droplet 

was calculated based on initial analyte concentration and its dissociation constant to determine the 

number of ions it will produce. Only ions can be separated into detectable quantities by mass 

spectrometry, thus solution phase neutrals are ignored in this model. The initial droplet charge was 



S-4 

 

modeled by the statistical fluctuations of positive and negative ions present in the total population 

of ions. For a droplet containing n ions, of which the ions are either positively or negatively charged, 

the overall charge is modeled by a binomial distribution (2). 

�(�; �, �) = 	���� ��(1 − �)���	(2) 
For this distribution, p is the probability of an ion being charged (either positive or negative), n is the 

number of ions, and z is number of positive charges. The initial number of positive and negative ions 

is on average, equal; however, statistical fluctuations in the positive and negative ions will produce 

some net charge. This is simulated by using a binomial random number generator with parameter p 

= 0.5 and n is the previously calculated number of ions. The initial charge is found by subtracting the 

number of negative ions from the positive ions.  

Droplet Evaporation to Rayleigh Limit 

With the droplet’s initial parameter set (size, charge, number of analytes), evaporation is allowed to 

occur. The temperature of the droplet was kept constant at 298 K to ease the computation time 

required. This is justified by the fact that droplets will cool evaporatively,
7
 but will also be warmed by  

collisional activation, so the temperature will drop initially but may rise later on, thus an accurate 

model for temperature will be difficult to obtain over the droplet size range of the simulation (4 µm 

– 10 nm).
8-10

 The droplet is allowed to evaporate until it reaches the Rayleigh limit diameter.
11,12

 


� = � 
 � ∗ ��("� ∗ 8 ∗ $% ∗ &)'
() 	(3) 

Here Dq is the charge on the droplet, e is elementary charge, ε0 is the permittivity of a vacuum, and γ 

is the solvent surface tension. Surface tension was estimated using a regression method developed 

by Jasper et al.
13,14

 

Droplet Fission and Progeny Droplets 

Upon reaching the Rayleigh limit, droplets undergo fission and lose mass and charge in the form of 

progeny droplets. At this point columbic fission occurs with most reports indicating a small mass 

loss, Δm, (2%) from the precursor droplet and large charge loss, Δq, (15%).
15-17

 From this the 

diameter of the precursor and progeny droplets can be calculated, assuming that on average 10 

progeny droplets are generated in a fission event. The exact number of progeny droplets generated 

is unknown, but 10 is within the range of typical values reported.
18-20

 Accordingly the size of 

precursor and progeny droplets was calculated according to these equations: 



 = (1 − ∆-)() ∗ 
�	(4) 
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where Npd is the number of progeny droplets taken to be 10, Dpd is the diameter of the progeny 

droplets, and Δm = 0.02. At the time of fission only ions that are close to the surface are allowed the 

possibility of being transferred to a progeny droplet. A volume fraction, Vf, is specified as the volume 

which can be considered for transfer to progeny droplets. In this simulation it is taken to be 15% of 

the total volume, but the exact value is unknown. The position of a solvated ion within a droplet is 

determined by its surface activity, S. Surface activity is a number between 0 and 1 describing the 

probability of a molecule being at the surface or the interior of the droplet. This is modeled by a 

binomial distribution, similar to equation (2), except that p = S, n is the number of ions, and z is the 

number of ions found in the outer region of the droplet. Thus when S = 1 all ions are located in the 

outer region, and when S = 0, none are located in the outer region. Any ions free of their respective 

counter charge are assumed to be in the outer region of the droplet. The average number of ions, 

NIP, and charges, Nq, per progeny droplet are calculated from (6) and (7)  

134 = � 


/
'
)
∗ �5 ∗ 634	(6) 

1 = 6 ∗ ∆81/
 	(7) 
where CIP and Cq are the number concentration of ions and charges in the outer region of the 

droplet. The number of ions transferred to progeny droplets can be modeled by a Poisson 

distribution.
21

 The number of ions, Nanal-IP, and charges, Nanal-q is chosen randomly from a Poisson 

distribution. 

�(1:�:;�34, 134) = ��<=> ∗ 134<?@?AB=>
1:�:;�34! 	(8) 

The same equation is used for Nanal-q with the appropriate substitutions. At this point, more random 

charging can occur due to the statistical fluctuations of positive and negative ions present in the 

total population of positive and negative ions. This is modeled in the same manner as described in 

the initial droplet conditions section (equation 2). With this information, the charge of the progeny 

droplet is calculated by subtracting the total population of positive ions from negative ions. This 

same methodology is completed for all the other progeny droplets, and then the conditions of the 

precursor droplet are updated based on the total number of ions consumed by the progeny 

droplets. All droplets (precursor and progeny) larger than 10 nm then undergo more 

evaporation/fission cycles until all droplets reach 10 nm in size. 

Analyte Ion Formation 
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Once all droplets have reached 10 nm in size the simulation ends. At this time each droplet is 

analyzed for charge to determine the number of ionized analytes. For example, a droplet containing 

a +2 charge is assumed to have two ionized molecules. Note that in the simulation the actual 

ionization event is not modeled explicitly. Gas phase ions could be produced by either the charge 

residue model or the ion evaporation model. This counting process is repeated for all the droplets of 

size <10 nm and then ionization efficiency can be calculated. Typically 5,000 – 50,000 precursor 

droplets are modeled to obtain an estimate of ionization efficiency and total number of ionized 

molecules. Alternatively this model can be applied to droplets containing multiple analytes, in which 

case multiple analyte ratios can be calculated. Note that multiple charges on the small analytes of 

interest are very unlikely and this possibility is ignored.  

 

 

Experimental and Simulated Results and Mechanistic Considerations for Multi-Analyte Mixtures 

 

In Figure S11a, the amount of tetrabutylammonium iodide was held constant at 0.1 ppm, while that 

of cocaine was changed. In Figure S11a the ratio of cocaine to tetrabutylammonium iodide increases 

as the concentration of cocaine increases. Figure S11b shows a similar trend to Figure 5b, but since 

the amount of cocaine is increased the calculated relative surface activity of cocaine increases. Again 

this is because as the cocaine concentration increases, more cocaine can occupy the surface 

increasing its relative surface activity. In Figure S11c, sodium tetraphenylborate was held constant at 

5 ppm and 3,5-dinitrobenzoic acid was varied. The data in Figure S11c are consistent with those of 

Figure S11a in that as the concentration of the analyte increases the ratio of analyte to salt signal 

increases. Additionally the relative surface activity of 3,5-dinitrobenzoic acid increases (Figure S11d) 

as the analyte concentration increases. The only noticeable difference is in the nESI results of Figure 

S11c, which show a drop in the ratio of 3,5-dinitrobenzoic acid to sodium tetraphenylborate in spite 

of its higher surface activity.  
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Figure S1. Panels A-D are consecutive images of the spray process occurring at 0 volts. The spray is 

illuminated with a red laser pointer and captured on a Watec Wat-704R camera. Panels A-D show a 

droplet event over the course of 4 consecutive scans. The time elapsed is around 100 milliseconds. Panels 

E and F are the mass spectrum of 50 ppm tributylamine and its corresponding ion chronogram. 

Tributylamine was added in a continuous manner at 15 µL/min through a fused silica capillary. 
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Figure S2. Positive ion mode MS/MS data for tributylamine, cocaine, and tetrabutylammonium iodide 

taken by kV paper spray, nano-electrospray ionization, and zero volt paper spray.  
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Figure S3: Negative ion mode MS/MS data for 3,5-dinitrobenzoic acid, fludixonil, and sodium 

tetraphenylborate taken by kV paper spray, nano-electrospray ionization, and zero volt paper spray. 
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Figure S4: Analysis of aromatic heterocycles, guanine (top, m/z 152), adenine (middle, m/z 136), thymine 

(middle, m/z 127), and Pyridine (bottom, m/z 80) with 0 V paper spray under both neutral (left) and acidic 

conditions (right).  
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Figure S5: Analysis of three different amines. Tetramethyl-1,4-butanediamine (top, m/z 145), 

diisopropylamine (middle, m/z 102), and methyl amine (bottom, m/z 32). All samples are dissolved in 

methanol at neutral with pH 7. Proton affinities are obtained from NIST Webbook. 
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Figure S6: Mass spectra of 50 ppm diphenylamine (DPA) on a paper substrate at 0 V and 1 V, respectively. 

Note the difference in scales and the fact that the m/z 170 signal intensity is about 1.5 times higher than 

that at 0 V.   
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Figure S7: Mass spectra of 5 µL of a mixture of 9 ppm morphine and 0.1 ppm tetrabutylammoniumiodide 

using a) nESI, b) kV PS, and c) zero volt PS. Mass spectra of 5 µL of a mixture of 36 ppm 3,5-dinitrobenzoic 

acid and 5 ppm sodium tetraphenylborate using d) nESI, e) kV PS, and f) zero volt PS.  The relative 

intensity of tetrabutylammonium signal to morphine in zero volt PS is much higher than in nESI and kV PS 

in both cases. The same is true of the ratio of tetraphenylborate to 3,5-dinitrobenzoic acid for zero volt PS 

as compared to nESI and kV PS.  
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Figure S8. Simulation results of Weber number of methanol droplets. Using this information, it is assumed 

that droplets may have diameters between 1-4 µm after aerodynamic breakup. 
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Figure S9. The number of ionized molecules vs. concentration for 2 micron (bottom) and 4 micron (top) 

droplets. The simulation was run at three different surface activities.  
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Figure S10. Ionization efficiency vs. concentration of 2 micron (bottom) and 4 micron (top) droplets. The 

simulation was run at three different surface activities. 
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Figure S11. Cocaine to tetrabutylammonium iodide ratio dependence in positive ion mode for zero volt PS 

and nESI. a) Tetrabutylammonium iodide concentration is held constant at 0.1 ppm, while cocaine 

concentration changes. b) Relative surface activity of cocaine calculated to match the experimental ratio 

in part a). c) Sodium tetraphenylborate is held constant at 5 ppm, while 3,5-dinitrobenzoic acid 

concentration changes. d) Relative surface activity of 3,5-dinitrobenzoic acid calculated to fit experimental 

data in part c). Surface activity of the salt is assumed to be 1 for simulations. 
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Supplementary Movies: 

Movie Captions: 

Supplementary Movie 1: This movie shows the analysis of 50 ppm tributylamine with zero volt paper 

spray. Continuous feeding at 15 µL/min is used to feed the paper. With continuous feeding, a near 

continuous stream of droplets is observed entering the mass spectrometer inlet.  

 

Supplementary Movie 2: Same as supplementary movie 1 but at ¼ speed. 

 

Supplementary Movie 3: This movie shows the analysis of 50 ppm tributylamine with zero volt paper 

spray. Seven µL aliquot additions are added to the paper to cause generation of droplets. When solvent is 

added a group of droplet can be seen entering the mass spectrometer inlet.  

 

Supplementary Movie 4: Same as supplementary movie 3 but at ¼ speed. 
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