Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201505775

Cluster-Mediated Crossed Bilayer Precision Assemblies of 1D Nanowires

Anirban Som, Indranath Chakraborty, Tuhina Adit Maark, Shridevi Bhat, and Thalappil Pradeep*

Supporting Information

Cluster Mediated Crossed Bilayer Precision Assemblies of 1D Nanowires

Anirban Som, Indranath Chakraborty, Tuhina Adit Maark, Shridevi Bhat and Thalappil Pradeep *

Table of contents

Description	Page No.
Chemicals used	2
Computational modeling	2
Supporting information figures	3
References	11

List of figures

Figure No.	Description	Page
		No.
Figure S1	UV-visible absorption spectra of Ag ₄₄ , Te NWs and Ag ₄₄ @Te	3
	NWs	
Figure S2	Electron beam induced nodule formation on Ag44@Te NWs	4
	with increasing irradiation time	
Figure S3	Extent of nodule formation on electron beam irradiation with	4
	increasing Ag ₄₄ concentration	
Figure S4	Raman spectra of Te NW and Ag ₄₄	5
Figure S5	Structures formed from Ag44@Te NW upon butanol drying,	5
	zeta potential values for Te and Ag_{44} ($@$ Te NWs	
Figure S6	Assembly of Ag ₄₄ @Te NWs with increasing Ag ₄₄ loading	6
Figure S7	XPS spectra of Te and Ag ₄₄ @Te NWs	6
Figure S8	Side and top views of modeled assembly of Ag ₄₄ clusters	7
	between two parallel Te layers	
Figure S9	Additional H-bonds formed between Ag ₄₄ clusters in 81°	8
	orthogonal arrangement	
Figure S10	Relaxation of steric interactions in 81° orthogonal arrangement	8
	over a 90° arrangement	
Figure S11	UV-visible spectrum of Au ₁₀₂	9
Figure S12	Orthogonal bilayer assembly of Au ₁₀₂ @Te NWs	9
Figure S13	Assembly of Au ₁₀₂ @Te NWs by direct drop-casting	10
Figure S14	Device structure and strain sensing	10

Chemicals used

All the chemicals were commercially available and were used without further purification. Silver nitrate (AgNO₃, 99%), gold (III) chloride trihydrate (HAuCl₄, 3H₂O, 99%), 4mercaptobenzoic acid (MBA, 97%) and sodium borohydride (NaBH₄, 99.99%) were purchased from Aldrich. Tellurium dioxide (TeO₂, 99.9%) powder, hydrazine monohydrate (N₂H₄.H₂O, 99-100%) and PVP (Polyvinylpyrrolidone, K25) were supplied by Alfa Aesar, Fischer Scientific and SD Fine Chemicals, respectively. Ethylene glycol (LR), dimethylformamide (DMF, AR grade), dimethysulfoxide (DMSO, AR grade), toluene (AR grade), methanol (AR grade), ammonium acetate, citric acid and sodium hydroxide (NaOH) pellets were procured from RANKEM, India

Computational modeling

The structure for Ag₄₄(MBA)₃₀ was generated using the X-ray crystallographic coordinates deposited at the Cambridge Crystallographic Data Centre (CCDC) under the deposition name CCDC 949240. This data is available free of charge from CCDC at http://www.ccdc.cam.ac.uk/data request/cif. To model the Te NW bilayer assembly (parallel and orthogonal), the Ag₄₄ clusters were sandwiched between Te(001) surfaces. All the structures were built using ase-gui, which is the graphical interface available with Atomic Simulation Environment $(ASE)^1$, and VESTA² visualization software program.

Supporting Information Figures

Figure S1. A) UV-visible absorption spectra of a) $Ag_{44}(p-MBA)_{30}$ and b). Te NWs. B) ESI mass spectrum of $Ag_{44}(p-MBA)_{30}$. Expanded view of molecular ion peak (4 –ve charge) is shown in the inset along with the theoretical spectrum of the same ion. Minor features are due to fragments or association products during ionization. C) UV-vis absorption spectra of Ag_{44} @Te NWs with increasing cluster concentration (C_1 - C_5 , marked with 1 to 5). The NWs after cluster attachment were precipitated out through centrifugation and re-dispersed prior to the measurement of the spectra. Images of the procedure are shown in the inset. D) Shift of the 550 nm peak of Ag_{44} is plotted with increasing cluster concentration, indicating multilayer adsorption of clusters on Te NW surface at higher concentration. Gradual changes in positions of different peaks of Ag_{44} are shown in the insets.

Electron beam irradiation time

Figure S2. TEM images showing time evolution of nodules upon electron beam irradiation of Ag_{44} @Te NWs (C₃). Image A was acquired immediately. Subsequent images were acquired following a 30 s electron beam irradiation. The scale bar is 50 nm for all the images.

Figure S3. TEM images of Ag_{44} (*i*) Te NWs at different loadings of Ag_{44} , showing the size and the extent of nodule/island coverage of the NWs; (A) C₁, (B) C₂, (C) C₄ and (D) C₅. Scale bar is 20 nm in all the images.

Figure S4. (A) Raman spectra of Te NWs. The most intense Raman peak at 124 cm⁻¹ is due to the Raman active singlet A1 mode of Te lattice vibrations, while the less intense peak at 143 cm⁻¹ is one of the E doublets. (B) Raman spectrum of Ag₄₄. The cluster is Raman active due to the Raman active nature of its protecting ligand (p-MBA). Two strong bands observed at 1077 and 1584 cm⁻¹ arise from v_{12} and v_{8a} aromatic ring vibrations of p-MBA, respectively.

Figure S5. (A) Organized structure formed from butanolic dispersion of Ag_{44} (*i*) Te NWs (C₃) after solvent evaporation. (B) Increase in the value of zeta potential with increasing cluster loading. Scale bar in A is 200 nm.

Figure S6. TEM images of the kind of Ag_{44} (a) Te NWs assemblies formed at different loading of Ag_{44} ; (A) C_1 , (B) C_2 (C) C_3 , (E) C_4 , (F) C_5 . An area having perfect order from C_3 is expanded and shown in (D). Scale bar in D is 20 nm and is 200 nm for the other images.

Figure S7. XPS spectra of the Te 3d region for Te (red trace) and Ag₄₄@Te (blue trace) NWs.

Figure S8. (A) Side view of Ag_{44} clusters sandwiched between two parallel Te surfaces. (B) Top view of the same showing H-bonded network of Ag_{44} clusters. Each cluster is surrounded by four clusters from the same plane and by two clusters from the second plane forming 13 H-bonds.

Figure S9. Zoomed in view of the Ag₄₄ clusters in 81° orthogonal arrangement showing the formation of additional H-bonds, (A) L₃ H-bonds between C₃ and C₁ and (B) L₂ H-bonds between C₂ and C₁.

Figure S10. (A) Steric interactions between the neighboring clusters (marked) in 90° orthogonal arrangement. (B) Those interactions diminish in 81° orthogonal arrangement.

Figure S11. (A) UV-visible absorption spectrum of Au₁₀₂ in water.

Figure S12. (A) TEM image of the orthogonal assembly formed form Au_{102} (Te NWs. A schematic representation of the assembly formation by inter-cluster H-bonding is shown in the inset. (B) Expanded view of the same assembly showing an inter NW distance of 3.7 nm and an interlayer NW angle of 77°. Scale bar is 100 nm in A and is 20 nm in B.

Figure S13. TEM images of orthogonal assembly formed after a dilute dispersion of Au_{102} (*i*) Te NWs was allowed to dry on the TEM grid. The system preferentially forms bilayers. Scale bar is 5 µm in both the images.

Figure S14. Change in the conductivity of the device made by transferring the crossed bilayer assembly of Ag_{44} (*Q* Te NWs on PET substrate.

References

- (1) S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 2002, 5, 56-66.
- (2) K. Momma and F. Izumi, J. Appl. Cryst. 2011, 44, 1272-1276. Code available at http://jp-

minerals.org/vesta/en/