## **Supporting Information**

# Diffusion controlled simultaneous sensing and scavenging of heavy metal ions in water using atomically precise cluster – cellulose nanocrystal composites

Nishil Mohammed,<sup>†</sup> Avijit Baidya,<sup>‡</sup> Vasanthanarayan Murugesan,<sup>‡</sup> Avula Anil Kumar,<sup>‡</sup> Mohd Azhardin Ganayee,<sup>‡</sup> Jyoti Sarita Mohanty,<sup>‡</sup> Kam Chiu Tam<sup>\*,†</sup> and T. Pradeep<sup>\*,‡</sup>

<sup>†</sup> Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of

Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

<sup>‡</sup>DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry,

Indian Institute of Technology Madras, Chennai, 600 036, India

\* mkctam@uwaterloo.ca, pradeep@iitm.ac.in

#### **Table of contents**

| S.No. | Description                                                                            | Page No. |
|-------|----------------------------------------------------------------------------------------|----------|
| 1.    | Hg <sup>2+</sup> adsorption by CNCs                                                    | S2       |
| 2.    | Cu <sup>2+</sup> adsorption by nanocomposite                                           | S3       |
| 3.    | Size determination of hydrogel beads using vernier caliper                             | S4       |
| 4.    | SEM–EDS characterization of the control nanocomposite                                  | 85       |
| 5.    | SEM–EDS characterization of the Hg <sup>2+</sup> saturated nanocomposite               | S6       |
| 6.    | SEM–EDS characterization of the Cu <sup>2+</sup> saturated nanocomposite               | S7       |
| 7.    | Characterization of Au@BSA NCs                                                         | S8       |
| 8.    | XPS characterization to study cluster quenching and Hg <sup>2+</sup> binding mechanism | S9       |
| 9.    | Red intensity profile for quenching experiment                                         | S10      |
| 10.   | R-code to obtain the variation of red intensity along the bead diameter                | S11      |
| 11.   | Error calculation for diffusion coefficient estimation                                 | S12      |
| 12.   | Stability of the freeze dried nanocomposite hydrogel beads                             | S13      |
| 13.   | Affinity of Hg <sup>2+</sup> ions with Au@BSA NCs and Au@BSA NCs CNC-ALG nanocomposite | S14      |

## Supporting information 1: Hg<sup>2+</sup> adsorption by CNCs



**Figure S1.** Concentration of  $Hg^{2+}$  before and after adsorption with CNCs (Adsorbent dosage = 10 mg/mL, Adsorbate concentration = 50 ppm, pH = 7, Temperature = 25 °C).

Supporting information 2: Cu<sup>2+</sup> adsorption by nanocomposite



**Figure S2.** (a) Equilibrium  $Cu^{2+}$  batch adsorption data fitted using linearized form of Langmuir adsorption isotherm. (b) Digital photographs of the vials containing nanocomposite (A) before and (B) after adsorption of  $Cu^{2+}$  ions under white light and UV light, respectively.

## Supporting information 3: Size determination of hydrogel beads using vernier caliper



**Figure S3.** (a) Photograph of the vernier caliper used for the measurement of hydrogel bead diameter. (b) Average size distribution of the hydrogel beads used to measure the bead diameter.

Supporting information 4: SEM-EDS characterization of the control nanocomposite



Figure S4. SEM-EDS elemental analysis and elemental mapping of control nanocomposite.

Supporting information 5: SEM–EDS characterization of the Hg<sup>2+</sup> saturated nanocomposite



Figure S5. SEM-EDS elemental analysis and elemental mapping of  $Hg^{2+}$  saturated nanocomposite.

Supporting information 6: SEM-EDS characterization of the Cu<sup>2+</sup> saturated nanocomposite



Figure S6. SEM-EDS elemental analysis and elemental mapping of  $Cu^{2+}$  saturated nanocomposite.

## Supporting information 7: Characterization of Au@BSA NCs



**Figure S7.** (a) TEM image (b) UV-Vis absorbance spectrum and (c) Photoluminescence spectra showing the excitation (black line) and emission (red line) peaks of Au@BSA NCs.

Supporting information 8: XPS characterization to study cluster quenching and Hg<sup>2+</sup> binding mechanism



**Figure S8.** (a) XPS spectra of Au 4f region for the nanocomposite before (up) and after (down)  $Hg^{2+}$  adsorption. (b) XPS spectra of Hg 4f region of the nanocomposite after  $Hg^{2+}$  adsorption (Hg 4f data are given only after  $Hg^{2+}$  adsorption as the control nanocomposite does not have  $Hg^{2+}$ ).





**Figure S9.** (a) Plot showing the variation in red intensity along the bead diameter at t = 100 s for 100 ppm concentration of Hg<sup>2+</sup>. (b) Plot showing the fitting of the variation in red intensity for various time points to a sine curve. (c) Plot of the maximum intensity (taken from the centre of sine curve) plotted against time.

#### Supporting information 10: R-code to obtain the variation of red intensity along the

## bead diameter

```
library(jpeg)
readJPEG("/Users/Romy/Downloads/Quenching30.jpg")
r <- readJPEG("/Users/Romy/Downloads/Quenching30.jpg")</pre>
Red <- as.data.frame(r[,,1])</pre>
Green <- as.data.frame(r[,,2])</pre>
Blue <- as.data.frame(r[,,3])</pre>
center red <- as.data.frame(Red[1024,])</pre>
center_green <- as.data.frame(Green[1024,])</pre>
center blue <- as.data.frame(Blue[1024,])</pre>
center_red <- as.data.frame(t(center_red))</pre>
center_green <- as.data.frame(t(center_green))</pre>
center blue <- as.data.frame(t(center blue))</pre>
for (i in 1:nrow(center red))
{
      center_red[i,2] <- i</pre>
      center_green[i,2] <- i</pre>
      center blue[i,2] <- i</pre>
}
colnames(center red) <- c("intensity", "pixel.no")</pre>
colnames(center green) <- c("intensity","pixel.no")</pre>
colnames(center blue) <- c("intensity", "pixel.no")</pre>
center red[,3] <- "RED"</pre>
center blue[,3] <- "BLUE"</pre>
center green[,3] <- "GREEN"</pre>
center pixels <- rbind(center red,center blue,center green )</pre>
library(plotly)
plot ly(center pixels, y = intensity, color = V3, type = "Scatter", mode =
"markers")
```

Supporting information 11: Error calculation for diffusion coefficient estimation

$$\mathbf{D} = \frac{\mathbf{l}^2}{\mathbf{\pi}^2 \mathbf{\tau}}$$

To calculate error,

$$\Delta D = \frac{l(2\tau\Delta l + \Delta\tau l)}{\pi^2\tau^2}$$

Here:

 $\tau = 1594 \text{ s},$ 

l = 0.126 cm,

 $\Delta l = 0.75 \text{ x } 10^{-4} \text{ cm}$  (size of one pixel) and

 $\Delta \tau = 478.7$  sec (error from fitting the decay equation)

Substituting this in the equation, we get:

$$\Delta D = 0.3 \text{ x } 10^{-6} \text{ cm}^2/\text{sec}$$

Supporting information 12: Stability of the freeze dried nanocomposite hydrogel beads



**Figure S12.** Photograph of the freeze dried nanocomposite hydrogel beads which have been stored for more than 6 months, under UV light.

Supporting information 13: Binding affinity of Hg<sup>2+</sup> ions with Au@BSA NCs and Au@BSA NCs CNC-ALG nanocomposite



**Figure S13.** Normalized fluorescence intensities of Au@BSA NCs and Au@BSA NCs CNC-ALG nanocomposite after binding with Hg<sup>2+</sup> ions at regular time intervals.