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Experimental methods 

Chemicals 

Curcumin (C21H20O6, 94% pure), piperine (C17H19NO3, 97% pure), α-cyclodextrin (C36H60O30, 

98% pure), and β- cyclodextrin (C42H70O35, 97%) were obtained from Sigma-Aldrich. Methanol 

(99.9 % pure), Hexane (97% pure), DMSO (99.9% pure) and milli Q water were used throughout 

the experiment. 

Instrumentation 

All mass spectrometric measurements were conducted using a Waters Synapt G2Si High 

Definition Mass Spectrometer equipped with electrospray ionization (ESI) and ion mobility (IM) 

separation. All the samples were analyzed in negative ESI mode. The instrument was calibrated 

using sodium formate (m/z 20−1500) as a calibrant for the low mass range. For IMS 

measurements, the ions of interest were selected by a quadrupole mass filter and passed through 

the IMS cell for isomer separation where nitrogen was used as a buffer gas. Typical experimental 

parameters were: disolvation gas temperature, for temperature dependent, study it was varied 

from 40 to 600 °C ; capillary voltage, 3 kV; sample cone, 0 V; source offset, 0 V; trap collision 

energy, 2 V; trap gas flow, 2 mL/min; helium cell gas flow, 180 mL/min; IMS gas flow, 80 

mL/min; trap DC bias, 40 V; IMS wave height, 40 V and IMS wave velocity, 750 m/s. The 

collision voltage in the transfer cell was raised until fragmentations were seen properly (4-60 

V).The concentration of the sample was 0.05 mM and it was infused at a flow rate of 10 

µL/mins. 

Parameters for cyclodextrin-curcumin inclusion complexes: Capillary voltage, 3 kV; sample 

cone, 20 V; source offset, 20 V; trap collision energy, 2 V; trap gas flow, 2 mL/min; helium cell 

gas flow, 180 mL/min; IMS gas flow, 80 mL/min; trap DC bias, 40 V; IMS wave height, 40 V; 

IMS wave velocity, 400 m/s. 

We used the recent literature on negative ion mode traveling wave ion mobility mass 

spectrometry calibrations.1 Polyalanine was used as a calibrant. We compared the CCS values of 

Leucine encephalin with a reported paper.1 Then we carried out the experiments. 

UPLC Separation Method 

Standard curcumin solutions (0.05 mM in methanol) were prepared. The UPLC instrument is 

ACQUITY from Waters. An ACQUITY UPLC BEH C18 1.7 µ column was kept at 40 °C. The 
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mobile phase was water/acetonitrile (50/50). The flow rate of the mobile phase was set at 

0.5 mL/min. Mass spectrometry data were collected using a Waters Synapt G2Si High Definition 

Mass Spectrometer equipped with electrospray ionization (ESI) in the negative ion mode. The 

capillary voltage was 3.0 kV for negative ion detection. MS/MS fragmentation spectra of 

curcumin were acquired with the precursor ion, m/z 367. 

ESI MS for curcumin-piperine interactions 

The ESI MS for curcumin piperine interactions has been performed in ethanol. 

Computational methods 

Initial geometries of the curcumin was taken from the PDB files (enol), cif files (enol) 2-5 in the 

literature, and also built from their structural formulae using Avogadro software.6 Since only the 

enol form has been crystallized, we built the keto structure by modifying the enol group by 

moving the H atom and the initial keto geometry was supported by a co-crystal structure.6 First, 

we carried out a conformational isomer search on the enol and keto forms of curcumin using a 

genetic algorithm and weighted rotor searches using Avogadro. The parameters of the genetic 

algorithm were, Children=10, Mutability=10, and Convergence=50 Scoring method=Energy. We 

used an MMFF94 force field. All the structures were modeled by utilizing Avogadro software 

packages6 and the visualizations presented were created using Visual Molecular Dynamics 

(VMD) software.7 The crystal structures of alpha-CD8 and beta-CD9 were taken from PDB files. 

The enol form was unchanged in this search due to the closed hydrogen bond. The input 

geometries for the keto conformer search were two different enol isomers which are known from 

their crystal structures and are distinguished by opposite positions of the -OH with respect to the 

-OMe group on both ends of the molecule.  

We found that the keto form bends into many conformations, and we classified those by the 

degree and angle of bending. We generated several isomers using different random seeds. A 

conformer search was carried out using a genetic algorithm in Avogadro to obtain a few different 

keto isomers which were distinguished by the degree of bending. 

DFT geometry optimization for all these isomer structures was carried out using the B3LYP 

functional and the 6-311++G(d,p) basis set, as implemented in the NWChem program.10 We 

used the deprotonation site at one of the phenolic -OH form (Figure S3) groups for both the keto-

enolic and diketone forms. For the enol form, the deprotonation at the phenolic -OH is 
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energetically preferred to that at the enolic -OH, as it does not involve the breakage of the 

intramolecular keto-enolic hydrogen bond. 

Electrostatic charges (ESP charges), which are known to yield more accurate CCS values than 

Mulliken partial charges, for the optimized structures were calculated by fitting to the 

electrostatic potential calculated using DFT as above with the Merz-Singh-Kollman scheme as 

implemented in NWChem.10  These ESP charges were applied for the estimation of theoretical 

CCSs using the trajectory method (TM) as implemented in the MOBCAL program11-13 in its 

modified version for N2 gas.13  

The trajectory method (TM) in Mobcal is quite CPU intensive as it runs in serial mode and we 

restricted its use to only the isomers of curcumin alone, and for the larger curcumin-cyclodextrin 

complexes we employed the Projection Approximation (PA) method in Mobcal which is known 

to give accurate values in the size range of molecules of our interest.  

A molecular docking14 study using Autodock 4.2 was applied to build the curcumin∩CD 

inclusion complexes. 

 

Computational methods for curcumin-piperine interactions: 

Piperine and curcumin have aromatic six-membered rings and hydrogen bond donors and 

acceptors. Thus they can interact through hydrogen bond and π-π stacking interactions. We have 

interacted piperine with the each isomer of curcumin through hydrogen bond and π-π stacking 

interactions. The different possible geometries were optimized using density functional theory 

calculations. Previous literature showed that Minnesota functionals are suitable for the 

description of non-covalent interactions.15,16 All the geometries were optimized using the M06-

2X/6-31G* level of theory. The vibrational analysis revealed that the optimized geometries were 

corresponding to true minima on the potential energy surface.  All the calculations were 

performed with the help of GAUSSIAN 09 software. 

 

Molecular docking study 

We assigned Gasteiger charges to all atoms by following the procedure as implemented in 

Autodock. For simplicity, we neglected torsional freedom on all molecules which would also 

result in the glucopyranose units being rotated with respect to each other. The free energies of 

binding were calculated by summing the intermolecular and internal and torsional terms and 
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subtracting the unbound energy which is a calculation that is performed within the Autodock 

program. The size of the search space in which the curcumin isomer (keto/enol) was to be moved 

was a cube with a side of length of 126 points with point spacing of 0.375 Å. α-CD is the 

smallest CD consisting of six glucopyranose units and β-CD consists of seven glucopyranose 

units. The CD molecule consisting of the ring of glucopyranose units has a wide rim known as 

the head (H) to which the secondary OH groups are bonded and the tail which is a narrower rim 

to which primary OH groups are added. Head-head orientation in CD dimer was found as the 

most stable in MD compared to head-tail and tail-tail, as a result of the larger number of 

intermolecular hydrogen bonds.17 During the docking simulations, in the monomer complexes, 

the curcumin isomers (CE1 and CK1) were taken as the “ligand” i.e. the movable molecule 

whose degrees of freedom would be varied and CDs (α- and β-) as the “receptor” which was the 

fixed and completely rigid central molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 



S8 

 

Figure S1. CID mass spectra and fragmentation patterns of isomeric forms of curcumin in transfer CID; 
A) keto form and B) enol form. Note the encircled peaks in A and in B, which are the characteristic 
fragmentation patterns of keto and enol forms, respectively. 
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Figure S3. DFT optimized EDP (CE2-H)- structure, where EDP stands for enol deprotonation.  

Figure S2. Schematic representation of cis keto-enol forms of curcumin.  



S10 

 

 

 

 

 

 

Table S1. Experimental and theoretical CCS values 

  

 

 

Possible isomers 

 

 

Energy (in a.u.) 

 

Calculated CCS by TM ( Å2) 

 

Exp. CCS ( Å2) 

(CE1-H)- -1263.389 213.0  

(CE2-H)- -1263.387 213.5 211.0 

(CK1-H)- -1263.386  198.8  

(CK2-H)- -1263.382  188.0 196.0 

Figure S4. A) & B) Bending angles of (CK1-H)- & (CK2-H)- 75º & 65º, respectively. 

* The isomer labels imply the follows: C, cis; E and K, enol and keto. 
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Figure S5. Solvent dependent study of keto-enol isomers. Keeping the concentration of curcumin 

constant, solvents were changed from non-polar to polar (hexane to methanol/water). With the increase 

of polarity, the keto form is enhanced. 
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Figure S6. A) Plot of the natural logarithm of keto/enol peak intensity ratios against different 
disolvation temperatures from 40 to 600 °C. B) With the increase of disolvation temperature, the keto 
form is enhanced. The lowest energy enol and keto structures are also shown in A). 

 

 

 

 

 

 

 

 

 



S13 

 

 

 

 

 

Figure S7. A) Plot of the natural logarithm of keto/enol peak intensity ratios against the 

different cone voltages, from 15 V to 90 V. B) With the increase in cone voltage, the enol form 

decreases. 
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Figure S8. Cone voltage-dependent fragmentation study. No additional change in fragmentation was 
seen with the increase of cone voltage. 
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Figure S9. A) UPLC separated keto enol tautomers of curcumin. B) The MSMS fragmentation of the 
keto (i) and enol (ii) forms of curcumin. Tautomer specific peaks are encircled. 
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Figure S10. ESI MS of supramolecular adducts of curcumin-piperine complex in ethanol.  Inset of the 
mass spectrum showing that the peak intensities of the isotopologues of the calculated and 
experimental are matching. 
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Figure S11. DFT optimized structures of deprotonated (CE1-H)--piperine interactions. 

Different possibilities of structural combination between deprotonated (CE1-H)- and piperine 

are shown in A)-E). Among all E) is the lowest energy structure. 
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Figure S12. DFT optimized structures of deprotonated (CE2-H)--piperine interactions. 

Different possibilities of structural combination between deprotonated (CE2-H)- and piperine 

are shown in A)-F). Among all E) is the lowest energy structure. 
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Figure S13. DFT optimized structures of deprotonated (CK1-H)--piperine interactions. 

Different possibilities of structural combination between deprotonated (CK1-H)- and piperine 

are shown in A)-D). Among all D) is the lowest energy structure. 
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Figure S14. DFT optimized structures of deprotonated (CK2-H)--piperine interactions. 

Different possibilities of structural combination between deprotonated (CK2-H)- and piperine 

are shown in A)-E). Among all E) is the lowest energy structure. 
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Table S2. Relative energies of the (curcumin H)--piprine complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. Most stable curcumin (without proton loss)-piperine complexes with their interaction 

energies. 

 

 

 

 

 

Deprotonated 
forms of 
curcumin 

Different conformers of 
curcumin-piperine complexes 

Relative energy 
(kcal/mol) 

(CE1-H)- (CE1-H)--piperine 1 20.99 
(CE1-H)- (CE1-H)--piperine 2  2.77 
(CE1-H)- (CE1-H)--piperine 3  0.69 
(CE1-H)- (CE1-H)--piperine 4 20.99 
(CE1-H)- (CE1-H)--piperine 5  0.00 

   
(CE2-H)- (CE2-H)--piperine 1 17.76 
(CE2-H)- (CE2-H)--piperine 2 18.91 
(CE2-H)- (CE2-H)--piperine 3 12.68 
(CE2-H)- (CE2-H)--piperine 4 17.30 
(CE2-H)- (CE2-H)--piperine 5   0.00 
(CE2-H)- (CE2-H)--piperine 6  3.23 

   
(CK1-H)- (CK1-H)--piperine 1 15.22 
(CK1-H)- (CK1-H)--piperine 2  8.76 
(CK1-H)- (CK1-H)--piperine 3 10.83 
(CK1-H)- (CK1-H)--piperine 4   0.00 

   
(CK2-H)- (CK2-H)--piperine 1 14.76 
(CK2-H)- (CK2-H)--piperine 2  8.07 
(CK2-H)- (CK2-H)--piperine 3  3.46 
(CK2-H)- (CK2-H)--piperine 4  3.23 
(CK2-H)- (CK2-H)--piperine 5  0.00 

 
Curcumin-piperine complexes 

 
Interaction energy 

(kcal/mol) 

CE1-piperine 5 -23.74 

CE2-piperine 5 -21.95 

CK1-piperine 4 -22.43 

CK2-piperine 5 -18.10 
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Table S4. Most stable curcumin deprotonated-piperine complexes with their interaction energies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(Curcumin-H)--piperine 

complexes 

 
Interaction energy 

(kcal/mol) 

(CE1-H)--piperine 5 -23.51 

(CE2-H)--piperine 5 -20.60 

(CK1-H)--piperine 4 -23.08 

(CK2-H)--piperine 5 -22.18 

Figure S15. DFT optimized lowest energy structures of A) CE1-piperine, B) CE2-piperine, C) 

CK1-piperine and D) CK2-piperine, respectively.  
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Figure S16. Drift time profile of curcumin-β-cyclodextrin (1:2) inclusion complex; two peaks are 
indicating the isomeric structures. Inset of drift time profile represents the relative peak intensities of 
isotopologues of keto and enol inclusion complexes of curcumin which are matching with the calculated 
peak intensities of the isotopologues. 
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Figure S17. Drift time profile of curcumin-α-cyclodextrin (1:1) inclusion complex; two peaks are 
indicating the isomeric structures. Inset of drift time profile represents the relative peak intensities of 
isotopologues of keto and enol inclusion complexes of curcumin which are matching with the calculated 
peak intensities of the isotopologues. 
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Figure S18. A) & B) CE1 and CK1 docked β-cyclodextrin structures, respectively with binding 

energies. 

Figure S19. A) & B) Docking of β-cyclodextrin-CE1 and β-cyclodextrin-CK1,respectively with 

second β-cyclodextrin. Binding energies and CCS values are given below the structures. 



S26 

 

 

 

 

 

 

 

 

 

 

Figure S20. CE1 docked β-cyclodextrin dimer structures. A) & B) The two β-cyclodextrin 

dimers were kept apart at 6Å and 4Å, respectively. The binding energies, distances and CCS 

values are provided below each structure.  

Figure S21. CK1 docked β-cyclodextrin dimer structure. A) and B) The two β-cyclodextrin 

dimers were kept apart at different angles 30° and 65°, respectively. The binding energies, 

angles between the two cyclodextrin and CCS values are given below each structure.  
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Table S5. CE1-docked β-cyclodextrin dimers with binding energies and CCS values, which are shown 
for different separation distances of the CD dimers. 

 

Distance between 
two  β-cyclodextrins 

(Å2) 

 

Binding energy of 
lowest energy 

conformer (kcal/mol) 

 

Calculated CCS 
value of lowest 

energy conformer 
(Å2) 

 

Exp. CCS 
values (Å2) 

4 -6.99 396.0  

5 -7.01 411.0 418.0 

6 -6.97 430.0  

 Table S6. CK1 docked β-cyclodextrin dimer with binding energy and CCS values. 

 

Angle between two  
β-cyclodextrins 

 

Binding energy of 
lowest energy 

conformer 
(kcal/mol) 

 

Calculated CCS 
value of lowest 

energy conformer 
(Å2) 

 

Exp. CCS 
values (Å2) 

30° -8.34 374.0  

40° -8.58 390.0 402.0 

65° -7.23 414.0  
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