Preparation of gas phase naked silver cluster cations outside a mass spectrometer from ligand protected clusters in solution

Madhuri Jash,^a Arthur C. Reber,^b Atanu Ghosh,^a Depanjan Sarkar,^a Mohammad Bodiuzzaman,^a Pallab Basuri,^a Ananya Baksi,^a Shiv N. Khanna,^{*b} and Thalappil Pradeep^{*a}

^aDST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

^bDepartment of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States

*To whom correspondence should be addressed. E-mail: pradeep@iitm.ac.in; snkhanna@vcu.edu

Table of Contents

Name	Description	Page No.
S1	Photograph of the instrumental set-up	3
S2	Characterization of [Ag ₁₈ H ₁₆ (TPP) ₁₀] ²⁺ cluster	4
S 3	Characterization of $[Ag_{18}D_{16}(TPP)_{10}]^{2+}$ cluster	5
S 4	Comparison between the experimental and the	6
	calculated spectra	
S5	Full range ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$	7
	cluster during heating	
S 6	Formation of Ag_{17}^+ from both $Ag_{17}H_{14}^+$ and $Ag_{17}D_{14}^+$	8
S7	Comparision of ESI mass spectra of	9
	$[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster during heating at different	
	capillary and tube lens voltage	
S 8	Full range ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$	10
	cluster during heating at higher capillary and tube lens	
	voltage	
S 9	Ion chronograms of selected ions	11
S10	MS^2 for Ag_{17}^+ , $Ag_{17}H_{14}^+$ and $Ag_{18}H^+$ ions	12
S11	Thermal dissociation of thiolate protected cluster with	13
	same experimental conditions	
S12	Effect of distance between the heating tube and the	14
	ESI source	
S13	Photograph of the instrumental set-up and diagram	15
	used for ion/molecule reactions	
S14	Comparison of oxygen addition reaction of naked	16
	clusters with CD ₃ OD as solvent	
S15	Comparison of oxygen addition reaction of naked	17
	clusters created from $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ and	
	$[Ag_{18}D_{16}(TPP)_{10}]^{2+}$	
S16	Comparison of reactivity between Ag_{17}^+ and $Ag_{18}H^+$	18
	ions with oxygen	
S17	$MS^{2} \text{ of } Ag_{17}O^{+}, Ag_{17}O_{2}^{+}, Ag_{17}O_{3}^{+} \text{ and } Ag_{17}O_{4}^{+} \text{ ions}$	19
S18	Comparison of MS ² results of Ag ₁₇ (H ₂ O) ₂ O ₂ ⁺ and	20
	$Ag_{17}H_4O_4^+$ ions	

S19	TEM images of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster and the	21
	electrosprayed products collected	
S20	The calculated structures of Ag_{15}^+ , Ag_{17}^+ , Ag_{18}^+ , and	22
	$Ag_{18}H^+$ ions	
S21	Isomers of $Ag_{18}H^+$ and their energies	23
S22	Experimental and calculated masses measured with	24
	the LTQ	
S23	Experimental and calculated masses measured using	25
	the G2-Si	

Photograph of the instrumental set-up:

S1: Photograph of the instrumental set-up used for the creation of naked cluster ions.

Characterization of [Ag₁₈H₁₆(TPP)₁₀]²⁺ cluster:

Fig. S2 (A) UV-vis absorption spectrum of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster in MeOH showing characteristic absorption features. (B) ESI mass spectrum of the cluster in positive mode (using the G2-Si) is showing a sharp peak at m/z 2290 which is assigned as $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$. Other small peaks separated by m/z 131 are due to PPh₃ loss which are shown by asterisks. (C) Peak at m/z 2290 is expanded, which is matching well with the calculated isotope pattern of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$.

Characterization of [Ag₁₈D₁₆(TPP)₁₀]²⁺ cluster:

Fig. S3 ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ and $[Ag_{18}D_{16}(TPP)_{10}]^{2+}$ cluster ions (using the G2-Si). The mass shift is due to the exchange of hydride ions with deuteride ions. In $[Ag_{18}D_{16}(TPP)_{10}]^{2+}$, 100% exchange of hydrogen with deuterium was not there due to the presence of non-deutereted solvents in the synthesis.

Comparison between the experimental and the calculated spectra:

Fig. S4 Experimental mass spectra of $Ag_{17}H_{14}^+$, Ag_{17}^+ , $Ag_{18}H_{13}^+$ and $Ag_{18}H^+$ ions match well with the calculated isotopic patterns.

Full range ESI mass spectra of [Ag₁₈H₁₆(TPP)₁₀]²⁺ cluster during heating:

Fig. S5 Full range ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster with varying the heating tube temperature from 250 °C to 350 °C at CV and TV of 45 V and 100 V, respectively. At 250 °C, $Ag_{17}H_{14^+}$ and $Ag_{18}H_{13^+}$ were detected and at 300 °C, Ag_{17^+} and $Ag_{18}H^+$ were seen along with their hydride clusters. Finally, at 350 °C only Ag_{17^+} and $Ag_{18}H^+$ were seen without mass selection. At lower mass region, there were oxidation peaks of $[Ag(TPP)]^+$, $[Ag(TPP)_2]^+$ and TPP^+ .

Formation of Ag₁₇⁺ from both Ag₁₇H₁₄⁺ and Ag₁₇D₁₄⁺:

Fig. S6 ESI mass spectra of $Ag_{17}H_{14}^+$ and $Ag_{17}D_{14}^+$ starting from $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ and $[Ag_{18}D_{16}(TPP)_{10}]^{2+}$, respectively. In the spectrum of $Ag_{17}D_{14}^+$, the peaks shown by asterisks (35%) are arising due to the presence of hydrogen, which are coming due to the partial isotope exchange (principally due to $Ag_{17}D_{13}H^+$), due to the presence of non-deuterated solvents. $Ag_{17}H_{14}^+$ and $Ag_{17}D_{14}^+$ are both converted to Ag_{17}^- at 350 °C.

Comparision of ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster during heating at different capillary and tube lens voltage:

Fig. S7 ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster with varying the heating tube temperature at CV and TV of 45 V and 100 V (left) and 140 V and 240 V (right). These two sets of CV and TV give different results at different temperatures of heating tube which is mainly due to the in-source fragmentation at higher CV and TV. Finally at 350 °C, at CV and TV of 45 V and 100 V, only Ag_{17}^+ and $Ag_{18}H^+$ were seen without mass selection, whereas at CV and TV of 140 V and 240 V, naked clusters along with smaller core sizes appear due to fragmentation. The weak features shown by pink triangles are due to $[Ag_x(TPP)_y]^+$ clusters. Note the difference in intensities of odd and even numbered clusters.

Full range ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster during heating at higher capillary and tube lens voltage:

Fig. S8 Full range ESI mass spectra of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster with varying heating tube temperature from room temperature to 350°C at CV and TV of 140 V and 240V. At room temperature, $Ag_{17}H_{14^+}$ was detected along with some low mass region peaks. At 250°C, Ag_{11^+} , Ag_{13^+} , Ag_{15^+} , Ag_{16^+} , Ag_{17^+} and $Ag_{18}H^+$ were seen. Finally at 350°C, all the naked clusters of silver along with Ag_{17}^+ and $Ag_{18}H^+$ were detected.

Ion chronograms of selected ions:

Fig. S9 Ion chronograms of selected ions during the formation of naked clusters. At time zero the temperature was 250° C and there were only existence of $Ag_{17}H_{14}^+$ and $Ag_{18}H_{13}^+$. Then slowly temperature was raised to 350° C over a few minutes, which results the appearance of Ag_{17}^+ and $Ag_{18}H^+$.

Fig. S10 MS² for (A) Ag_{17}^+ , (B) $Ag_{17}H_{14}^+$, (C) $Ag_{18}H^+$ ions and the isolation widths are m/z 10, 10 and 8, respectively centered at the middle of the isotopic clusters. The collision energies used for the Ag_{17}^+ , $Ag_{17}H_{14}^+$ and $Ag_{18}H^+$ ions are 37, 17 and 24 in instrumental units, respectively. Due to higher collision energy, Ag_{17}^+ breaks into smaller sized naked clusters whereas the hydrides of silver ions give back the metallic core, Ag_{17}^+ . RA refers to relative abundance.

Thermal dissociation of thiolate protected cluster with the same experimental conditions:

Fig. S11 ESI mass spectra of $[Ag_{25}(DMBT)_{18}]^{3-}$ cluster at different temperatures (same conditions like before) after electrospraying the cluster solution. The thermal dissociation results in $[Ag_mL_n]^{-1}$ but not the naked cluster. Note that these clusters are thiolate protected, for them the mass spectra show intense features till the mass limit of the instrument (m/z 4000).

Effect of distance between the heating tube and the ESI source:

Fig. S12 ESI mass spectra of Ag_{17}^+ with varying distances (ΔY) between the heating tube and ESI source keeping the constant 5 mm distance between the heating tube and inlet. Here, with increasing ΔY , H₂O and O₂ addition peaks of Ag_{17}^+ appear along with the $Ag_{17}H_{14}^+$ peak. At last, only $Ag_{17}H_{14}^+$ peak appears due to the decreasing temperature, as more air flows through the heating tube.

Photograph of the instrumental set-up and diagram used for ion/molecule reactions:

S13: (A) Photograph and (B) schematic diagram of the instrumental set-up used for ion/molecule reactions of naked cluster ions with oxygen.

Comparison of oxygen addition reaction of naked clusters with CD₃OD as solvent:

Fig. S14 ESI mass spectra of Ag_{17}^+ and $Ag_{18}H^+$ ion clusters after reaction with oxygen (O₂) gas in presence of CD₃OD and CH₃OH as the two different solvents. There were no shifts for the $Ag_{17}H_4O_x^+$ and $Ag_{18}H_3O_y^+$ peaks in the case of deuterated and non-deuterated methanol as the solvents.

Comparison of oxygen addition reaction of naked clusters created from $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ and $[Ag_{18}D_{16}(TPP)_{10}]^{2+}$:

Fig. S15 (A) ESI mass spectra of Ag_{17}^+ , $Ag_{18}H^+$ (green) and Ag_{17}^+ and $Ag_{18}D^+$ (red) after reaction with oxygen (O₂) gas. (B) Magnified view of the isotopic separation of $Ag_{18}H_3O_y^+$, generated from both $Ag_{18}H^+$ (green) and $Ag_{18}D^+$ (red). Top and bottom spectra in each case were generated from $[Ag_{18}D_{16}(TPP)_{10}]^{2+}$ and $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$, respectively. MS/MS of oxygen added peaks of $Ag_{18}H/D^+$ could not be performed due to poor intensity.

Comparison of reactivity between Ag₁₇⁺ and Ag₁₈H⁺ ions with oxygen:

Fig. S16 Relative intensities of Ag_{17}^+ and $Ag_{18}H^+$ as function of oxygen flow rate which shows the faster reactivity of Ag_{17}^+ with oxygen compared to the $Ag_{18}H^+$.

MS^{2} of $Ag_{17}H_{4}O^{+}$, $Ag_{17}H_{4}O_{2}^{+}$, $Ag_{17}H_{4}O_{3}^{+}$ and $Ag_{17}H_{4}O_{4}^{+}$ ions:

Fig. S17 MS² of (A) $Ag_{17}H_4O^+$, (B) $Ag_{17}H_4O_2^+$, (C) $Ag_{17}H_4O_3^+$ and (D) $Ag_{17}H_4O_4^+$ and the isolation widths are m/z 5, 4.5, 4 and 3, respectively centered at the middle of the isotopic clusters. The collision energies used for $Ag_{17}H_4O^+$, $Ag_{17}H_4O_2^+$, $Ag_{17}H_4O_3^+$ and $Ag_{17}H_4O_4^+$ are 28, 50, 28 and 50 in instrumental units, respectively. For all these cases, due to collisional activation, there is oxygen detachment which results in the parent Ag_{17}^+ cluster. RA refers to relative abundance.

Comparison of MS^2 results of $Ag_{17}(H_2O)_2O_2^+$ and $Ag_{17}H_4O_4^+$ ions:

Fig. S18 MS^2 spectra of (A) $Ag_{17}(H_2O)_2O_2^+$ and (B) $Ag_{17}H_4O_4^+$ at the collision energy of 50 in instrumental units. The isolation widths were m/z 5 and 3, respectively centered at the middle of the isotopic clusters. RA refers to relative abundance.

TEM images of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster and the electrosprayed products collected:

Fig. 19 (A) TEM image of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster before electrospray. Particle distribution shows an average size of 1.68 ± 0.19 nm for the nanoclusters. Lattice spacing of 0.24 nm of d₍₁₁₁₎ of plane of silver is marked in the inset. (B) EDS spectrum of cluster confirms the composition. (C) TEM image of the collected electrosprayed product of $[Ag_{18}H_{16}(TPP)_{10}]^{2+}$ cluster at the heating tube temperature of 350 °C. In inset, lattice spacing of 0.24 nm is marked which confirmed the d₍₁₁₁₎ plane of silver. (D) EDS spectrum of the collected product at heating tube temperature of 350 °C.

The products of electrospray were collected using a set-up as shown below.

The calculated structures of Ag15⁺, Ag17⁺, Ag18⁺, and Ag18H⁺ ions:

Fig. S20 The structure and HOMO- LUMO gaps of Ag_{15}^+ , Ag_{17}^+ , Ag_{18}^+ and $Ag_{18}H^+$. Ag_{15}^+ was found to be resistant to O₂ etching due to very high HOMO-LUMO gap.

Isomers of Ag₁₈H⁺ and their energies:

Fig. S21 The structures, relative energies and HOMO-LUMO gaps of the lowest energy isomers for $Ag_{18}H^+$.

Table S22 **Experimental and calculated masses measured with the LTQ:** The most abundant peak of the isotopic cluster is used to define the m/z value.

Experimental	Calculated	Assignment $[Ag_m(PPh_3)_n(PPh_2)_oH_pO_q(H_2O)_r]^{z+}$						
m/z	m/z	Ag	PPh ₃	PPh ₂	Н	0	H ₂ O	Charge
		(m)	(n) (n)	(0)	(p)	(q)	(r)	(z)
183.00	182.95			1*				1
262.17	262.09		1					1
294.08	294.08		1			2		1
297.17	297.10		1		1	1	1	1
386.83	387.01	1	1		2	1		1
400.83	400.99	1	1			2		1
631.17	631.09	1	2					1
647.17	647.08	1	2			1		1
1185.92	1185.95	11						1
1294.75	1294.86	12						1
1401.67	1401.76	13						1
1454.08	1454.09	11	1		6			1
1510.50	1510.67	14						1
1521.67	1521.75	14			10			1
1617.42	1617.57	15						1
1726.33	1726.48	16						1
1737.58	1737.56	16			11			1
1833.42	1833.38	17						1
1847.50	1847.49	17			14			1
1853.42	1853.41	17			4	1		1
1867.33	1867.39	17				1	1	1
1869.42	1869.40	17			4	2		1
1885.33	1885.40	17			4	3		1
1901.33	1901.39	17				2	2	1
1901.42	1901.39	17			4	4		1
1929.33	1929.35	17				6		1
1943.42	1943.30	18			1			1
1955.50	1955.39	18			13			1
1961.25	1961.31	18			3	1		1
1977.33	1977.30	18			3	2		1
1993.33	1993.30	18			3	3		1

*Peak is seen with two hydrogens losses.

Table S23 **Experimental and calculated masses measured using the G2-Si:** The most abundant peak of the isotopic cluster is used to define the m/z value.

Experimental	Calculated m/z	Assignment [Ag _m (PPh ₃) _n H _o] ^{z+}			
m/z		Ag	PPh ₃	Н	Charge
		(m)	(n)	(0)	(z)
2290.1587	2290.2152	18	10	16	2
2159.3291	2159.6199	18	9	16	2
2028.3219	2028.5740	18	8	16	2
1897.3425	1897.5281	18	7	16	2
1765.8406	1765.9827	18	6	16	2