# Geologically-inspired monoliths for sustainable release of essential minerals into drinking water

Swathy Jakka Ravindran<sup>†‡</sup>, Ananthu Mahendranath<sup>†</sup>, Srikrishnarka Pillalamarri<sup>†</sup>, Avula Anil Kumar<sup>†</sup>, Md Rabiul Islam<sup>†</sup>, Sritama Mukherjee<sup>†</sup>, Ligy Philip<sup>‡</sup>, Thalappil Pradeep<sup>†\*</sup>

<sup>†</sup>DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Adyar, Chennai 600 036, India.

<sup>‡</sup>Environmental and Water Resources Engineering (EWRE) Division, Department of Civil Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600 036, India.

\*Corresponding Author: (T.P.) E-mail: pradeep@iitm.ac.in. Fax: +91-44-2257-0545.

#### SUPPORTING INFORMATION CONTENT

| Total number of pages   | : | 11 |
|-------------------------|---|----|
| Total number of figures | : | 7  |

- Total number of tables : 2
- Total number of equations : 5

## **TABLE OF CONTENTS**

| Supporting<br>Figure | Title                                                                                                                                                                                                                         | Page No. |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure S1            | Characterization of microstructure and chemical composition of the sustained copper and zinc releasing monolith, $M2_{(Na-Cu-Zn)}$                                                                                            | 3        |
| Figure S2            | Characterization of microstructure and chemical composition of monolith, $M3_{(K-C0-M0-V)}$ releasing oligo/trace elements namely cobalt, molybdenum and vanadium                                                             | 4        |
| Figure S3            | Characterization of microstructure and chemical composition of monolith - M4 <sub>(K-Mg-Mn)</sub> releasing magnesium / manganese                                                                                             | 5        |
| Figure S4            | Stability of scaffold material in the test water                                                                                                                                                                              | 6        |
| Figure S5            | Characterization and chemical composi <i>tion</i> of monolith – $M1_{(Na-Zn-Se)}$ after 120 cycles of leaching ( <i>a</i> ) SEM image and the corresponding EDS spectra along with the elemental maps (b) Powder XRD pattern. | 6        |
| Figure S6            | Mineral release trend from the designed prototype                                                                                                                                                                             | 7        |
| Figure S7            | Speciation of mineral ions formed in water after the release                                                                                                                                                                  | 8        |
| Equation 1 – 5       | Equations used for evaluation of sustainability metrics                                                                                                                                                                       | 9        |
| Table S1             | CO <sub>2</sub> emission (including raw material manufacture and monolith production)                                                                                                                                         |          |
| Table S2             | LD-50 of the raw materials used for the synthesis of material                                                                                                                                                                 | 11       |



**Figure S1.** Characterization of microstructure and chemical composition of the sustained copper and zinc releasing monolith,  $M2_{(Na-Cu-Zn)}$ . (A) Powder XRD pattern of the sintered monolith compared with Gehlenite (Ca<sub>2</sub>Al(AlSi)O<sub>7</sub>), Gahnite (ZnAl<sub>2</sub>O<sub>4</sub>), Tenorite (CuO) and Leucite (KAl(Si<sub>2</sub>O<sub>6</sub>)). Inset shows the photograph of the monolith. (B) (i) TEM image of a grain of the material, (ii) the lattice resolved image of the same grain and its FFT pattern (inset) and (iii) the corresponding EDS spectra along with the elemental maps. As the TEM grid is made of copper, its mapping is not shown. (C) Infrared spectrum of the mineral composite. (D) SEM image of the material and the corresponding EDS spectrum along with elemental maps.



**Figure S2.** Characterization of microstructure and chemical composition of monolith,  $M3_{(K-C_0-M_0-V)}$  releasing oligo/trace elements namely cobalt, molybdenum and vanadium. (A) Powder XRD pattern of the sintered monolith and the photograph of the pellet (Inset). The material  $M3_{(K-C_0-M_0-V)}$  is matched with Cristobalite (SiO<sub>2</sub>), Feldspar sanidine (KAlSi<sub>3</sub>O<sub>8</sub>) and other silicate phases like Clinopyroxene (Na<sub>1</sub>O<sub>6</sub>Si<sub>2</sub>V), Hollandite (K<sub>0.8</sub>O<sub>17</sub>V<sub>10</sub>) and Molybdite (MoO<sub>3</sub>), Shcherbinaite (V<sub>2</sub>O<sub>5</sub>). (B) SEM image of the material and the corresponding EDS spectrum along with the elemental maps. (C) Infrared spectrum of the mineral composite (D) (i) TEM image of a grain of material and (ii) the lattice resolved image of the same grain with the FFT pattern (inset). The corresponding elemental maps (iii) and the EDS spectrum (iv).



**Figure S3.** Characterization of microstructure and chemical composition of monolith -  $M4_{(K-Mg-Mn)}$  releasing magnesium / manganese. The material was incorporated with 6 elements to show a simultaneous release from the single system. (A) Powder XRD pattern of the material, compared with Akermanite (Ca<sub>2</sub>Mg[Si<sub>2</sub>O<sub>7</sub>]), Sanidine (K(AlSi<sub>3</sub>O<sub>8</sub>)) and Orthoclase (KAlSi<sub>3</sub>O<sub>8</sub>). (B) Infrared spectrum of the mineral composite. (C) (i) TEM image of a grain of the material and (ii) the lattice resolved image of the same grain with the FFT pattern (Inset). The corresponding elemental maps (iii) and the EDS spectrum (iv). (D) SEM image of the material and corresponding EDS spectrum with elemental maps.



Figure S4. Stability of scaffold material in test water (A) Weight loss per cm<sup>2</sup> of the monoliths immersed in water as a function of time. (B) Concentration of Al<sup>3+</sup> release in water.



#### **Supporting information 5**

**Figure S5.** Characterization and chemical composition of monolith –  $M1_{(Na-Zn-Se)}$  after 120 cycles of leaching (a) SEM image and the corresponding EDS spectra along with the elemental maps (b) Powder XRD pattern.



**Figure S6.** Mineral release trend from the designed prototype. The release of selected metal ions in a sustained fashion under continuous flow of water at a pilot scale at a flow rate of 2 mL per minute. (a) Schematic representation of the prototype design. (b-d) Release of select mineral ions as a function of time.



**Figure S7.** Speciation of mineral ions formed in water after the release. The speciation diagram was prepared using simulations run on Visual MINTEQ software version 3.1 (freeware, available at, http://vminteq.lwr.kth.se).

### Equations used for the evaluation of sustainability metrics

| Equation (1) | : | Mass intensity = $\frac{\text{mass of all products used excluding water}}{\text{mass of product}} kg/kg \text{ product}$         |
|--------------|---|----------------------------------------------------------------------------------------------------------------------------------|
| Equation (2) | : | Water intensity (W <sub>P</sub> ) = $\frac{\text{mass of all water used}}{\text{mass of product}}$ kg/kg product                 |
| Equation (3) | : | Reaction mass efficiency (RME) = $\frac{\text{mass of product}}{\text{mass of all reactants}} \times 100\%$                      |
| Equation (4) | : | Energy Intensity = $\frac{\text{amount of non renewable energy used}}{\text{mass of product}} kW.h/kg$                           |
| Equation (5) | : | $E \text{ factor} = \frac{[kg(raw \text{ materials}) - kg(desired \text{ product})]}{kg(total \text{ product including water})}$ |

**Table S1:** CO<sub>2</sub> emission (including raw material manufacture and monolith production).

A cradle-to-gate assessment of the  $[M2_{(Na-Cu-Zn)}]$  material's CO<sub>2</sub> emission including the manufacture of raw materials and production of designed monolith is presented below. The CO<sub>2</sub> emission due to transportation and disposal finished goods are not included and therefore it is not a cradle-to-grave assessment.

| List of raw<br>materials used in<br>M2 <sub>(Na-Cu-Zn)</sub> | CO2 emission by<br>manufacture of raw<br>materials (kg/kg) | CO <sub>2</sub> emission by<br>production of<br>designed monolith<br>(kg/kg) | Total<br>(kg/kg) |
|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|------------------|
| SiO <sub>2</sub>                                             | 0.373                                                      | -                                                                            | 0.373            |
| Al <sub>2</sub> O <sub>3</sub>                               | 0.492                                                      | -                                                                            | 0.492            |
| Na <sub>2</sub> CO <sub>3</sub>                              | 0.059                                                      | 4x10 <sup>-5</sup>                                                           | 0.05904          |
| CuCO <sub>3</sub>                                            | 0.200                                                      | 4x10 <sup>-5</sup>                                                           | 0.20004          |
| ZnO                                                          | 0.582                                                      | -                                                                            | 0.582            |
| KCl                                                          | 0.0138                                                     | -                                                                            | 0.0138           |

**Table S2:** LD-50 of the raw materials used for the synthesis of material

| Elements used                   | LD-50 (mg/kg) |
|---------------------------------|---------------|
| SiO <sub>2</sub>                | 500           |
| Al <sub>2</sub> O <sub>3</sub>  | 5000          |
| Na <sub>2</sub> CO <sub>3</sub> | 2800          |
| K <sub>2</sub> CO <sub>3</sub>  | 2000          |
| ZnO                             | 7950          |
| SeO <sub>3</sub>                | 1.6           |
| MgCO <sub>3</sub>               | NA            |
| CuCO <sub>3</sub>               | 1350          |
| CoO                             | 202           |
| MnO                             | 2000          |
| V <sub>2</sub> O <sub>5</sub>   | 474           |
| МоО                             | 2689          |
| KCl                             | 2600          |