Supporting Information

Highly-Sensitive As³⁺ Detection Using Electrodeposited Nanostructured Mno_x and Phase Evolution of the Active Material During Sensing

Tanvi Gupte^{a,b}‡, Sourav Kanti Jana^a‡, Jyoti Sarita Mohanty^a, Pillalamarri

Srikrishnarka^a, Sritama Mukherjee^a, Tripti Ahuja^a, Chennu Sudhakar^a, Tiju Thomas^{b*},

Thalappil Pradeepa*

^aDST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department

of Chemistry, Indian Institute of Technology Madras

^bDepartment of Metallurgical and Materials Engineering, Indian Institute of

Technology Madras

* Corresponding authors: pradeep@iitm.ac.in (Prof. T. Pradeep), tijuthomas@iitm.ac.in (Dr. Tiju Thomas)

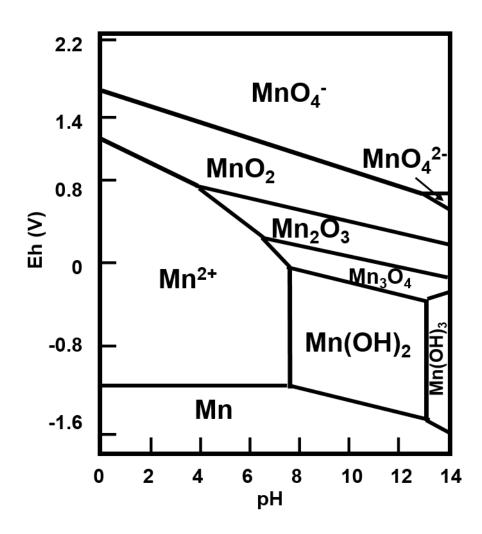
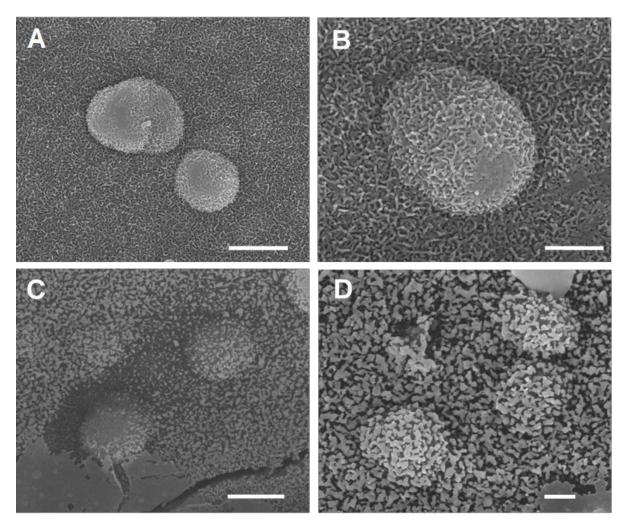
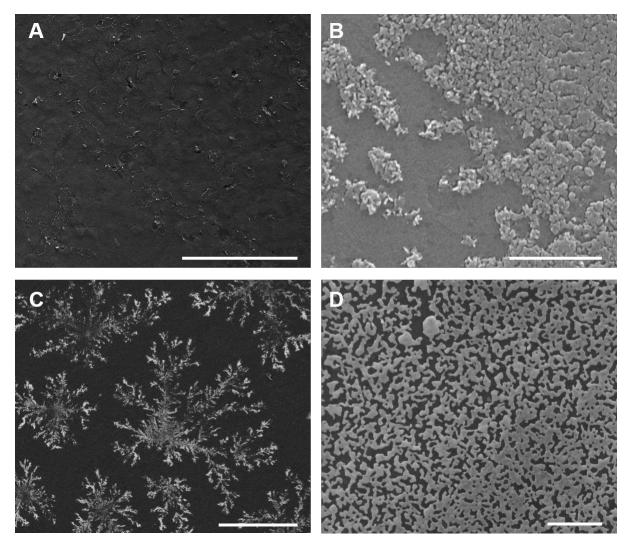
‡These authors contributed equally.

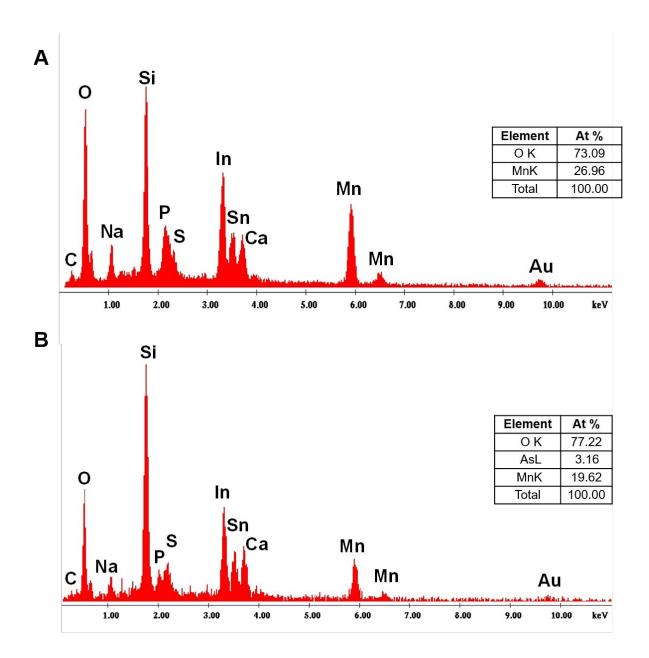
TABLE OF CONTENTS

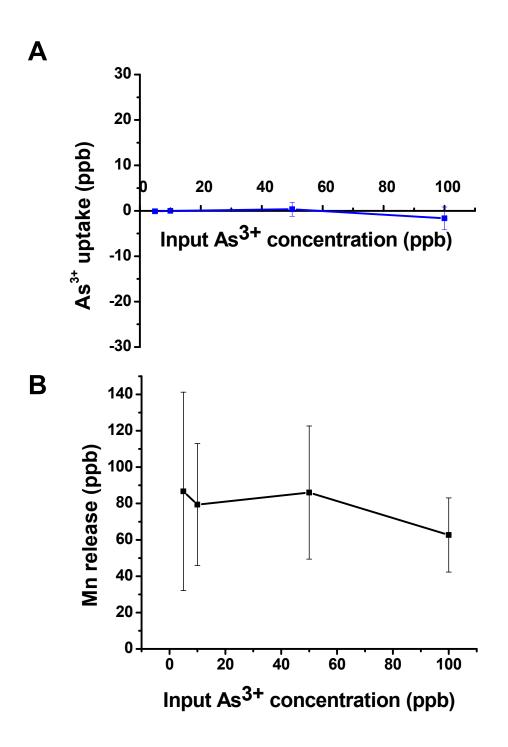
Figure/		Page	
Table No.	Title	No.	
Table S1	Values of each component of the electronic circuit used to fit Nyquist plots of EIS for M1 , M2 , and M3 electrodes		
Figure S1	Pourbaix (Eh-pH) diagram showing the predominant forms of manganese oxide and hydroxide		
Figure S2	FESEM micrographs of M1 electrode		
Figure S3	FESEM micrographs of M2 electrode		
Figure S4:	EDX spectra of M3 electrode before (A) and after (B) As ³⁺ sensing		
Figure S5	ICP-MS data for change in the arsenic and manganese ion concentrations before and after As ³⁺ sensing of M3 electrode		
Figure S6	TEM micrographs of M1 electrode		
Figure S7	TEM micrographs of M2 electrode		
Figure S8	XRD analysis of ITO glass substrate and control experiment on M3 electrode		
Figure S9	XPS spectra of As 3d region		
Figure S10	Nyquist plot of bare ITO glass substrate		
Figure S11	Electrochemical arsenite sensing response by M1 and M2 electrodes		
Figure S12	CV of bare ITO at optimized parameters	S15	
	Calculation of LOD	S16	
References	1	S17	

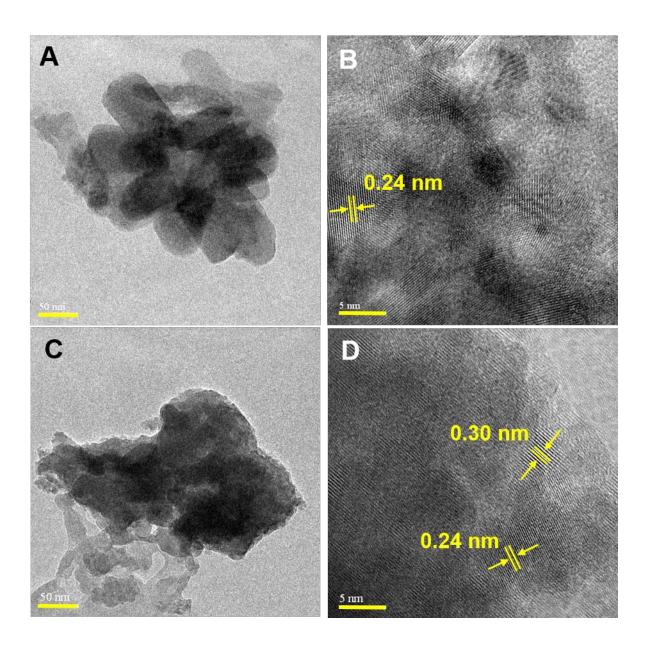
Table S1. Values of each component of the electronic circuit used to fit Nyquist plots of electrochemical impedance spectra (EIS) for **M1**, **M2**, and **M3** MnO_x/ITO electrodes. R1 is the internal resistance of the material, which directly influences the contact resistance between ITO and the electrodeposited material. R_{ct} is the charge transfer resistance at the electrode-electrolyte interface. Parallel combinations of both, C3-R3 and C4-R4 are related to diffusion of ions from the bulk electrolyte into porous network of the as-prepared electrode. Q1 and Q2 are called constant phase elements which are associated with the double layer capacitance formed in inter/intra particular porous structure.

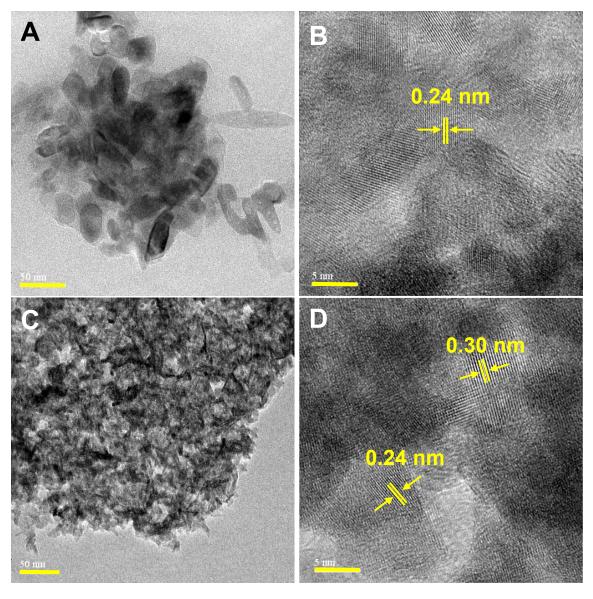
	М1	M2	М3
R _s	47.2 Ω	72.5 Ω	58.2 Ω
Q1	9*10 ⁻³ F.s ^(a-1)	0.2*10 ⁻³ F.s ^(a-1)	2*10 ⁻³ F.s ^(a-1)
R _{ct}	121	26.3 Ω	21.8
C3	31.7 *10 ⁻⁶ F	40.4 *10 ⁻⁶ F	6.57 *10 ⁻⁶ F
R3	1.12 ΚΩ	115.8 Ω	558.4 Ω
C4	1.9 *10 ⁻⁹ F	1.7 *10 ⁻⁹ F	2.5*10 ⁻⁹ F
R4	54.07 Ω	66.3 Ω	119 Ω
Q2	1.4*10 ⁻² F.s ^(a-1)	0.2*10 ⁻³ F.s ^(a-1)	1.3 *10 ⁻² F.s ^(a-1)

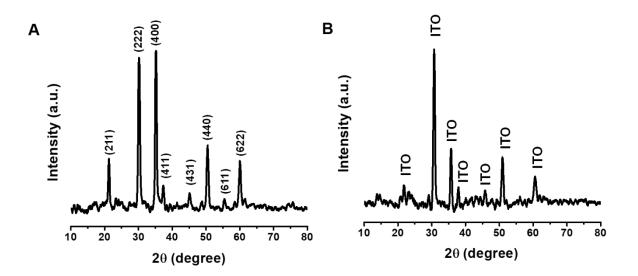




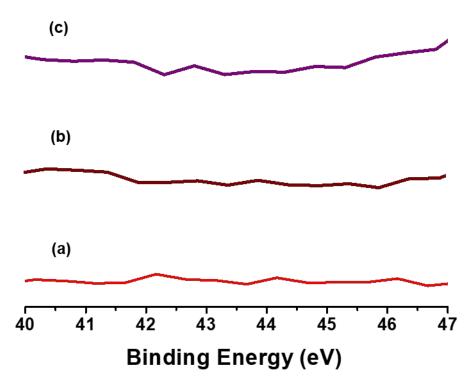

Figure S1. Pourbaix (Eh-pH) diagram showing the predominant forms of manganese oxide and hydroxide at $25^{\circ}C \pm 0.5$.¹


Figure S2. FESEM micrographs of (A and B) as-prepared **M1** MnO_x/ITO electrode and (C and D) after As³⁺ sensing. The scale bars are 1 µm for A and C, and 500 nm for B and D.


Figure S3. FESEM micrographs of (A and B) as-prepared **M2** MnO_x/ITO electrode and (C and D) after As³⁺ sensing. The scale bars are 100 µm for A and C, and 1 µm for B and D.


Figure S4. EDX spectra of **M3** electrode (A) before and (B) after As^{3+} sensing. Inset shows the element analysis. The change in Atomic % of Mn is attributed to the loss of Mn ions from the parent material by dissolution into the electrolyte during LSSV stripping of As^{3+} . Sn and In are from the substrate used.


Figure S5: ICP-MS data of electrode **M3** for change in the (A) arsenic and (B) manganese ion concentrations in the electrolyte due to LSSV. The data is recorded with three different **M3** electrodes.


Figure S6. HRTEM micrographs of MnO_x from electrode **M1** (A and B) as-prepared and (C and D) after As³⁺ sensing. (A) Aggregated nanorod-like structures. (B) corresponding lattice spacing of ~0.24 nm. (C) Sheets of MnO_x . (D) corresponding lattice spacing of 0.24 and 0.30 nm. The scale bars are 50 nm for A and C, and 5 nm for B and D.

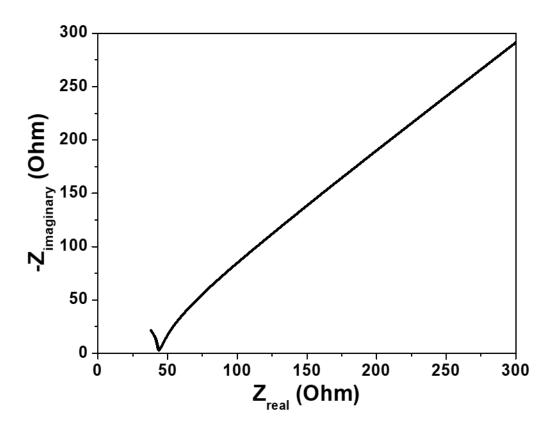

Figure S7. HRTEM micrographs of MnO_x from electrode **M2** (A and B) as-prepared and (C and D) after As³⁺ sensing. (A) Nanorod-like structures with their corresponding lattice spacing of ~0.24 nm in (B). (C) Crumpled paper-like morphology of MnO_x with lattice spacing of 0.24 and 0.30 nm in (D). The scale bars are 50 nm for A and C, and 5 nm for B and D.

Figure S8. XRD patterns of (A) bare ITO glass substrate (JCPDS file no: 71-2194) and (B) control experiment on electrode **M3** involving LSSV in DI water and PBS electrolyte followed by washing with DI water. All peaks in B belong to ITO substrate, no additional peaks were observed.

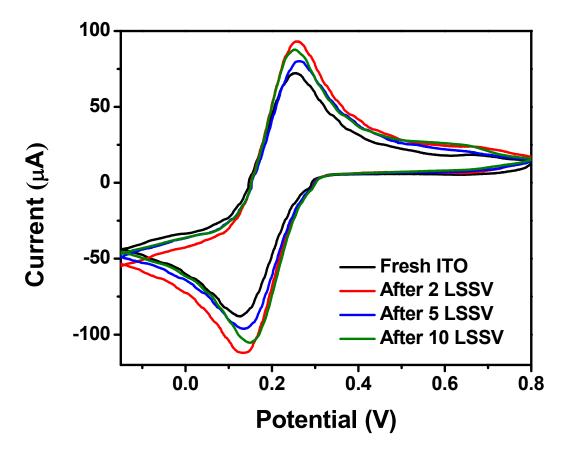

Figure S9. XPS spectra of As 3d region for electrode **M3**. (a), (b) and (c) correspond to bare ITO, before sensing and after sensing, respectively. Absence of As peak in (c) indicates that arsenic is not bound to the electrode surface after sensing.

Figure S10. Nyquist plot of electrochemical impedance spectra for bare ITO glass substrate in PBS electrolyte ($pH \sim 7.4$).

Figure S11. Electrochemical arsenite sensing response by MnO_x/ITO electrodes prepared at different CV voltage-windows: (A) **M1** and (B) **M2**.

Figure S12. Cyclic voltammogram of bare ITO in 32.6 μ M of potassium ferricyanide (K₃Fe(CN)₆) and 3.2 mM potassium chloride (KCl) as supporting electrolyte after performing LSSV at optimized parameters.

Calculation of LOD

The theoretical limit of detection (LOD) was calculated using the following formulae.²

LOB was estimated by measuring replicates of a blank sample and calculating both mean value and standard deviation (SD).

Limit of blank (LOB) = Mean blank + z-score × standard deviation of blank sample [1] = $1.32 \times 10^{-8} + 1.645 \times 4.15 \times 10^{-8}$ = 8.146×10^{-8}

Theoretical Limit of detection (LOD) = LOB + z-score × (standard deviation of measured lowest concentration of sample) [2]

= 8.146 × 10⁻⁸ + 1.645 × 0.0072 = 0.01195 ppb ≈ 0.012 ppb

The z-score in Equations 1 and 2 is the number of standard deviations based on 90% confidence level. It is a statistical parameter.

References

- 1. Freitas, R. M.; Perilli, T. A. G.; Ladeira, A. C. Q. Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate. *J. Chem.* **2013**, *2013*, 1–8.
- 2. Armbruster, D. A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. *Clin. Biochem. Rev.* **2008**, *29* (August), 49–52.