# **Supporting Information**

# InterparticleReactionsbetweenSilverNanoclustersLeading toProductCocrystallsbySelectiveCocrystallization

Wakeel Ahmed Dar,<sup>†</sup> Mohammad Bodiuzzaman,<sup>†</sup> Debasmita Ghosh, Ganesan Paramasivam, Esma Khatun, Korath Shivan Sugi and Thalappil Pradeep\*

Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai 600036, India

| Name | Description                                               | Page no. |
|------|-----------------------------------------------------------|----------|
|      | Experimental section                                      | 3        |
|      | Instrumentation                                           | 4        |
|      | UV/Vis spectroscopy                                       | 4        |
|      | General instrumental parameters used for ESI measurements | 4        |
|      | X-ray crystallography                                     | 5        |

|            | Single crystal X-ray diffraction analysis                                                                                                    | 5  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
|            | Electron Count formula of intermediates                                                                                                      | 6  |
| Figure S1  | Space-filling model of Ag <sub>16</sub> S <sub>8</sub> shell in NCs                                                                          | 6  |
| Figure S2  | IR spectrum of Ag <sub>16</sub> :Ag <sub>17</sub> co-crystal                                                                                 | 7  |
| Figure S3  | MSMS spectra of $[Ag_{16}(TBT)_8(CF_3COO)_6(CH_3CN)_3(Cl)]^+$                                                                                | 8  |
| Figure S4  | MSMS spectra of [Ag <sub>17</sub> (TBT) <sub>8</sub> (CF <sub>3</sub> COO) <sub>7</sub> (CH <sub>3</sub> CN) <sub>3</sub> (Cl)] <sup>+</sup> | 9  |
| Figure S5  | ESI MS of a reaction product in acetonitrile                                                                                                 | 10 |
| Figure S6  | ESI MS of a supernatant obtained after crystallization                                                                                       | 11 |
| Figure S7  | ESI MS spectra from m/z 100-1000                                                                                                             | 12 |
| Scheme 1   | Flow chart of reaction process                                                                                                               | 13 |
| Figure S8  | Optimized geometry of Ag <sub>16</sub> and Ag <sub>17</sub>                                                                                  | 14 |
| Figure S9  | Experimental and calculated absorption spectra                                                                                               | 15 |
| Figure S10 | Molecular orbitals observed at 356 nm                                                                                                        | 16 |
| Figure S11 | Molecular orbitals observed at 742 nm                                                                                                        | 17 |
| Table S1   | Crystal Structure data                                                                                                                       | 18 |
| Table S2   | Silver complexes, silver thiolates and phosphine intermediates                                                                               | 19 |
| Table S3   | Reaction intermediates                                                                                                                       | 20 |
|            | References                                                                                                                                   | 22 |

### **Experimental Section**

### Synthesis of [Ag<sub>18</sub>(TPP)<sub>10</sub> H<sub>16</sub>]<sup>2+</sup> nanocluster

Phosphine and hydride co-protected  $[Ag_{18}(TPP)_{10}H_{16}]^{2+}$  nanocluster (TPP – triphenylphosphine) assigned as  $Ag_{18}$  was synthesized by a reported method.<sup>1-2</sup> 20 mg of AgNO<sub>3</sub> was dissolved in the mixed solvents of 5 mL methanol and 9 mL of chloroform. After that 70 mg of TPP, dissolved in 1 mL of CH<sub>3</sub>Cl, was added to the above reaction mixture under stirring condition. After 20 min of stirring, 6 mg of NaBH<sub>4</sub> in 0.5 mL of ice cold water was added. Upon addition of the reducing agent, colourless solution changes to yellow. The reaction mixture was kept for continuous stirring for 3 h under dark condition. After 3 h the yellow colour solution changes to dark green which indicated the formation of the  $Ag_{18}$  cluster. The reaction mixture was allowed for solvent evaporation under reduced pressure. The green solid product collected was washed several times with water to remove excess silver precursor and the reducing agent. After washing, the pure material was extracted using methanol. The green colour solution of NC was characterized using UV-vis and ESI MS and was used for further reaction.

### Instrumentation

### (a) UV/Vis spectroscopy

UV-vis spectra were recorded using a Perkin Elmer Lambda 25 instrument in the range 200 – 1100 nm.

### (b) General instrumental parameters used for ESI measurements

Cluster sample was analysed by Waters Synapt G2Si High Definition Mass Spectrometer equipped with electrospray ionization (ESI) and ion mobility (IM) separation. The sample was analysed in positive ESI mode. The optimized conditions for the sample analysed is given below:

Sample concentration: 10 µg/mL

Solvent: CH<sub>3</sub>CN

Flow rate: 30 uL/min

Capillary voltage:2-3 kV

Cone voltage: 30 V

Source offset: 20 V

Trap collision Energy: 0 V

Transfer collision Energy: 0 V

Source temperature: 100°C

Desolvation temperature: 200°C

Desolvation gas Flow: 400 L/h

Trap gas flow: 10 L/h

### (c) X-ray crystallography

Single crystal data were measured using a Bruker Kappa APEX III CMOS diffractometer using CuK $\alpha$  ( $\lambda = 1.54178$  Å) radiation. Indexing was performed using APEX III. Data integration and reduction were performed using SAINT V8.37A. Absorption correction was performed by multi-scan method implemented in SADABS (Bruker, 2016). Space group was determined using XPREP implemented in APEX III.

### Single crystal X-ray diffraction (SCXRD) analysis

Structure was solved using SHELXT-2017 and least-squares refined using SHELXL-2017. Crystal data and refinement conditions are shown in Table S1. Suitable restraints were applied during the least-squares (LS) refinement. Upon refinement, it was observed that Ag<sub>16</sub> and Ag<sub>17</sub> were not disordered. The existence of two types of molecules in the same site results in the additional symmetry related disorders in both the molecules. Three of the CF<sub>3</sub> moieties are doubly disordered and one acetonitrile was also disordered. Their disorders have been resolved. The molecule has a crystallographic P2<sub>1/n</sub> space group. A more detailed explanation of Ag<sub>16</sub> and Ag<sub>17</sub> (33.33%). This depicts that in the co-crystal structure 2/3 (66.66%) NC molecules have 16 Ag atoms and 1/3 molecules have 17 Ag atoms. The difference Fourier map towards the end showed the presence of acetonitrile molecule in the lattice.

### **Electron count formula**

The total valence electron count (M) for each intermediates,  $[Ag_p(TBT)_q (TFA)_r(CH_3CN)_sCl_t]^+$  is counted by the formula, M = p-q-r-t-c, where p, q, r, t and c are the number of silver atoms, thiolate, trifluoroacetates, chloride and net positive charge on the molecule, respectively (Table S3-S5).<sup>3</sup>



Figure S1. Space-filling model of  $Ag_{16}S_8$  shell in (A)  $Ag_{16}$  and (B)  $Ag_{17}$  NCs. (C) Lateral view of the  $Ag_{16}S_8$  shell.



**Figure S2.** FTIR spectrum of  $Ag_{16}$ :  $Ag_{17}$  co-crystal. The absorption band at 1365 cm<sup>-1</sup> is assigned to N–O stretching in NO<sub>3</sub><sup>-</sup>.



**Figure S3.** MSMS spectra of  $[Ag_{16}(TBT)_8(CF_3COO)_6(CH_3CN)_3(Cl)]^+$  for different collision energies (I : 0 eV, II :10 eV, III : 20 eV, IV : 30 eV, IV : 40 eV). With the increase in collision energy the fragmentation occurs in  $Ag_{16}$  NC and gives rise to the formation of  $Ag_{15}$  species.



**Figure S4.** MSMS spectra of  $[Ag_{17}(TBT)_8(CF_3COO)_7(CH_3CN)_3(Cl)]^+$  for different collision energies (I : 0 eV, II :10 eV, III : 20 eV, IV : 30 eV, IV : 40 eV). With increase in the collision energy the ligands are removed and the number of Ag-atoms remains intact indicates  $Ag_{17}$  moiety is stable and does not give any  $Ag_{16}$  species.



**Figure S5.** ESI MS of a reaction product in acetonitrile. ESI MS of the reaction mixture shows the population of  $Ag_{16}$  and  $Ag_{17}$  clusters to be almost equal.



**Figure S6.** ESI MS of supernatant obtained after crystallization. The intensities of the peaks imply that the population of  $Ag_{17}$  is more than  $Ag_{16}$  which supports our assumption that selective crystallization occurred.



Figure S7. Time-dependent ESI MS spectra from m/z 100-1000. The peaks are assigned and marked by arrow. The species formed in this region are mainly silver-thiolate-phosphine complexes.

 $[Ag_{12}(SR)_8(TFA)_5(CH_3CN)]^+ + [Ag_{18}(TPP)_{10}H_{16}]^{2+}$ 2 min  $[Ag_{30}(SR)_9]^+$ 5 min  $[Ag_{7}(SR)_{3}]^{+} + [Ag_{9}(SR)_{4}]^{+} + [Ag_{13}(SR)_{5}]^{+} + [Ag_{13}(SR)_{7}]^{+} + [Ag_{14}(SR)_{7}]^{+}$  $-[Ag_9(SR)_4]^+$  $-[Ag_{13}(SR)_5]^+$ 15 min  $-[Ag_{13}(SR)_7]^+$  $-[Ag_{14}(SR)_7]^+$  $[Ag_{7}(SR)_{3}]^{+} + [Ag_{7}'(SR)_{3}]^{+} + [Ag_{10}(SR)_{4}]^{+} + [Ag_{12}(SR)_{7}]^{+} + [Ag_{12}'(SR)_{7}]^{+} + [Ag_{13}(SR)_{6}]^{+} + [Ag_{14}(SR)_{6}]^{+} + [Ag_$ +  $[Ag_{14}(SR)_8]^+$  +  $[Ag_{15}(SR)_6]^+$  +  $[Ag_{15}'(SR)_6]^+$  $-[Ag_7(SR)_3]^+$  $-[Ag_{10}(SR)_4]^+$  $-[Ag_{12}(SR)_7]^+$  $-[Ag_{12}'(SR)_7]^+$ 30 min  $-[Ag_{13}(SR)_6]^+$  $-[Ag_{14}(SR)_6]^+$  $-[Ag_{14}(SR)_8]^+$  $-[Ag_{15}(SR)_6]^+$  $-[Ag_{15}'(SR)_6]^+$  $[Ag_{7}'(SR)_{3}]^{+} + [Ag_{6}(SR)_{3}]^{+} + [Ag_{6}'(SR)_{2}]^{+} + [Ag_{7}(SR)_{2}]^{+} + [Ag_{8}(SR)_{3}]^{+} + [Ag_{12}(SR)_{7}]^{+} + [Ag_{11}(SR)_{6}]^{+} + [Ag_{17}(SR)_{8}]^{+} + [Ag_{11}(SR)_{6}]^{+} + [Ag_{11$  $[Ag_{16}(SR)_8]^+$  $-[Ag_7'(SR)_3]^+$  $-[Ag_6(SR)_3]^+$  $-[Ag_{6}'(SR)_{2}]^{+}$ 1 hour  $-[Ag_7(SR)_2]^+$  $-[Ag_8(SR)_3]^+$  $-[Ag_{12}(SR)_7]^+$  $-[Ag_{11}(SR)_6]^+$  $[Ag_{17}(SR)_8]^+ + [Ag_{16}(SR)_8]^+$ 

Scheme 1: Flow chart of the reaction process

Where SR is tertiary-butylthiolate (TBT). The other ligands (TFA, CH<sub>3</sub>CN and Cl) have not been included.

## 13





Figure S8. Optimized geometry of (A) Ag<sub>16</sub> and (B) Ag<sub>17</sub>.



Figure S9. Experimental (red) and theoretical (black) optical absorption spectra of a crystal.



Figure S10. Molecular orbitals responsible for the optical transition of the peak at 356 nm.



Figure S11. Molecular orbitals responsible for the optical transition of the peak at 742 nm.

Table S1. Crystal data and structure refinement for co-crystal

| Identification code                             | new1                                                    |               |  |  |
|-------------------------------------------------|---------------------------------------------------------|---------------|--|--|
| Empirical formula                               | $C_{54}  H_{81}  Ag_{16.33} F_{21}  N_4 O_{14}  S_8 Cl$ |               |  |  |
| Formula weight                                  | 3462.94                                                 |               |  |  |
| Temperature                                     | 293(2) K                                                |               |  |  |
| Wavelength                                      | 0.71073 Å                                               |               |  |  |
| Crystal system                                  | Monoclinic                                              |               |  |  |
| Space group                                     | P21/n                                                   |               |  |  |
| Unit cell dimensions                            | a = 19.802(9) Å                                         | α=90°         |  |  |
|                                                 | b = 22.502(10) Å                                        | β=98.198(14)° |  |  |
|                                                 | c = 22.792(11)  Å                                       | γ= 90°        |  |  |
| Volume                                          | 10052(8) Å <sup>3</sup>                                 |               |  |  |
| Ζ                                               | 4                                                       |               |  |  |
| Density (calculated)                            | 2.288 Mg/m <sup>3</sup>                                 |               |  |  |
| Absorption coefficient                          | 3.381 mm <sup>-1</sup>                                  |               |  |  |
| F(000)                                          | 6587                                                    |               |  |  |
| Crystal size                                    | 0.200 x 0.150 x 0.100 mm <sup>3</sup>                   |               |  |  |
| Cheta range for data collection2.856 to 25.000° |                                                         |               |  |  |
| Index ranges                                    | -22<=h<=23, -26<=k<=26, -27<=l<=27                      |               |  |  |
| Reflections collected                           | 137308                                                  |               |  |  |
| Independent reflections                         | 17664 [R(int) = 0.1507]                                 |               |  |  |
| Completeness to theta = $25.000^{\circ}$        | 99.8 %                                                  |               |  |  |
| Absorption correction                           | Semi-empirical from equivalents                         |               |  |  |
| Max. and min. transmission                      | 0.7453 and 0.5466                                       |               |  |  |
| Refinement method                               | Full-matrix least-squares on F <sup>2</sup>             |               |  |  |
| Data / restraints / parameters                  | 17664 / 904 / 1192                                      |               |  |  |
| Goodness-of-fit on F <sup>2</sup>               | 1.050                                                   |               |  |  |
| Final R indices [I>2sigma(I)]                   | R1 = 0.0812, $wR2 = 0.2079$                             |               |  |  |
| R indices (all data)                            | R1 = 0.1811, $wR2 = 0.3073$                             |               |  |  |
| Extinction coefficient                          | n/a                                                     |               |  |  |
| Largest diff. peak and hole                     | 1.946 and -1.274 e.Å <sup>-3</sup>                      |               |  |  |

| S. No. | [Intermediate] <sup>+</sup>                                                                                                | code | m/z    |
|--------|----------------------------------------------------------------------------------------------------------------------------|------|--------|
| 1      | [Ag(CH <sub>3</sub> CN)] <sup>+</sup>                                                                                      | Ι    | 150.01 |
| 2      | $[Ag(TBT)_2(CH_3CN)]^+$                                                                                                    | ii   | 326.11 |
| 3      | [Ag(PPh <sub>3</sub> )] <sup>+</sup>                                                                                       | iii  | 368.14 |
| 4      | $\left[\mathrm{Ag(TBT)}_{2}(\mathrm{CH}_{3}\mathrm{CN})(\mathrm{Cl})_{2}\right]^{+}$                                       | iv   | 398.11 |
| 5      | $\left[\mathrm{Ag}_{2}(\mathrm{TBT})_{2}(\mathrm{CH}_{3}\mathrm{CN})_{2}(\mathrm{CF}_{3}\mathrm{COO})\right]^{+}$          | v    | 587.21 |
| 6      | $\left[\mathrm{Ag}_{2}(\mathrm{TBT})(\mathrm{CF}_{3}\mathrm{COO})_{2}(\mathrm{CH}_{3}\mathrm{CN})(\mathrm{Cl})\right]^{+}$ | vi   | 606.20 |
| 7      | $\left[\operatorname{Ag}(\operatorname{PPh}_3)_2\right]^+$                                                                 | vii  | 631.18 |
| 8      | $\left[\mathrm{Ag}_{2}(\mathrm{TBT})(\mathrm{PPh}_{3})_{2}\right]^{+}$                                                     | viii | 828.89 |

Table S2. Silver complexes, silver thiolates and phosphines observed m/z below 1000

| [Intermediate] <sup>+</sup>                                                                                                       | code | m/z     | Electron count (M) |
|-----------------------------------------------------------------------------------------------------------------------------------|------|---------|--------------------|
| $\left[\mathrm{Ag}_{30}(\mathrm{TBT})_{9}(\mathrm{CF}_{3}\mathrm{COO})_{6}(\mathrm{CH}_{3}\mathrm{CN})_{5}\right]^{+}$            | 1    | 4928.08 | 14                 |
| $\left[Ag_{7}(TBT)_{3}(CF_{3}COO)(CH_{3}CN)_{3}(Cl)\right]^{+}$                                                                   | 2    | 1294.97 | 1                  |
| $\left[\mathrm{Ag}_{9}(\mathrm{TBT})_{4}(\mathrm{CF}_{3}\mathrm{COO})_{2}(\mathrm{CH}_{3}\mathrm{CN})_{2}\right]^{+}$             | 3    | 1635.29 | 2                  |
| $\left[\mathrm{Ag}_{13}(\mathrm{TBT})_{7}(\mathrm{CF}_{3}\mathrm{COO})_{4}\right]^{+}$                                            | 4    | 2479.99 | 1                  |
| $\left[\mathrm{Ag}_{13}(\mathrm{TBT})_{5}(\mathrm{CF}_{3}\mathrm{COO})_{6}\right]^{+}$                                            | 5    | 2526.24 | 1                  |
| $\left[\mathrm{Ag}_{14}(\mathrm{TBT})_{7}(\mathrm{CF}_{3}\mathrm{COO})_{5}\right]^{+}$                                            | 6    | 2703.01 | 1                  |
| $\left[\mathrm{Ag}_{7}(\mathrm{TBT})_{3}(\mathrm{CF}_{3}\mathrm{COO})_{3}\right]^{+}$                                             | 7    | 1361.51 | 0                  |
| $\left[\operatorname{Ag}_{10}(\operatorname{TBT})_4(\operatorname{CF}_3\operatorname{COO})_3\right]^+$                            | 8    | 1774.09 | 2                  |
| $\left[\mathrm{Ag}_{12}(\mathrm{TBT})_{7}(\mathrm{CF}_{3}\mathrm{COO})_{3}(\mathrm{CH}_{3}\mathrm{CN})_{2}\mathrm{Cl}\right]^{+}$ | 9    | 2377.02 | 0                  |
| $\left[\mathrm{Ag}_{12}(\mathrm{TBT})_{7}(\mathrm{CF}_{3}\mathrm{COO})_{3}(\mathrm{CH}_{3}\mathrm{CN})_{3}\mathrm{Cl}\right]^{+}$ | 10   | 2418.34 | 0                  |
| $\left[\mathrm{Ag}_{14}(\mathrm{TBT})_{6}(\mathrm{CF}_{3}\mathrm{COO})_{4}(\mathrm{CH}_{3}\mathrm{CN})\mathrm{Cl}\right]^{+}$     | 11   | 2573.86 | 2                  |
| $\left[\mathrm{Ag}_{13}(\mathrm{TBT})_{6}(\mathrm{CF}_{3}\mathrm{COO})_{6}\right]^{+}$                                            | 12   | 2615.38 | 0                  |
| $\left[\mathrm{Ag}_{14}(\mathrm{TBT})_{8}(\mathrm{CF}_{3}\mathrm{COO})_{4}(\mathrm{CH}_{3}\mathrm{CN})(\mathrm{Cl})\right]^{+}$   | 13   | 2751.97 | 0                  |
| $\left[\mathrm{Ag}_{15}(\mathrm{TBT})_{6}(\mathrm{CF}_{3}\mathrm{COO})_{5}(\mathrm{CH}_{3}\mathrm{CN})(\mathrm{Cl})\right]^{+}$   | 14   | 2795.23 | 2                  |
| $\left[\mathrm{Ag}_{15}(\mathrm{TBT})_{6}(\mathrm{CF}_{3}\mathrm{COO})_{5}(\mathrm{CH}_{3}\mathrm{CN})_{2}\mathrm{Cl}\right]^{+}$ | 15   | 2836.20 | 2                  |
| $\left[Ag_{6}(TBT)_{3}(CF_{3}COO)\right]^{+}$                                                                                     | 16   | 1028.86 | 1                  |

Table S3. Reaction intermediates formed during the reaction

| $\left[\mathrm{Ag}_{6}(\mathrm{TBT})_{2}(\mathrm{CF}_{3}\mathrm{COO})_{2}(\mathrm{CH}_{3}\mathrm{CN})\right]^{+}$  | 17 | 1092.62 | 1 |
|--------------------------------------------------------------------------------------------------------------------|----|---------|---|
| $\left[\mathrm{Ag}_{7}(\mathrm{TBT})_{2}(\mathrm{CF}_{3}\mathrm{COO})_{4}\right]^{+}$                              | 18 | 1385.95 | 0 |
| $\left[\mathrm{Ag}_{8}(\mathrm{TBT})_{3}(\mathrm{CF}_{3}\mathrm{COO})_{3}\right]^{+}$                              | 19 | 1469.89 | 1 |
| $\left[\mathrm{Ag}_{11}(\mathrm{TBT})_{6}(\mathrm{CF}_{3}\mathrm{COO})_{3}(\mathrm{CH}_{3}\mathrm{CN})\right]^{+}$ | 20 | 2102.34 | 1 |
| $\left[\mathrm{Ag}_{12}(\mathrm{TBT})_{7}(\mathrm{CF}_{3}\mathrm{COO})_{3}(\mathrm{CH}_{3}\mathrm{CN})\right]^{+}$ | 21 | 2298.93 | 1 |

### References

- Ghosh, A.; Bodiuzzaman, M.; Nag, A.; Jash, M.; Baksi, A.; Pradeep, T. Sequential Dihydrogen Desorption from Hydride-Protected Atomically Precise Silver Clusters and the Formation of Naked Clusters in the Gas Phase. *ACS Nano* 2017, *11*, 11145-11151.
- (2) Bootharaju, M. S.; Dey, R.; Gevers, L. E.; Hedhili, M. N.; Basset, J. M.; Bakr, O. M. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. J. Am. Chem. Soc. 2016, 138, 13770-13773.
- (3) Stellacci, F.; Tang, Y.; Pan, J.; Dass, A.; McLean, J. A.; Cliffel, D. E.; Kothalawala, N.; Harkness, K. M.; Demeler, B.; Bakr, O. M. [Ag44(SR)<sub>304</sub>]<sup>-</sup>: A Silver–Thiolate Superatom Complex. *Nanoscale* 2012, *4*, 4269-4274.