Supporting information for:

Intercluster Reactions Resulting in Silver-Rich Trimetallic Nanoclusters

Esma Khatun, Papri Chakraborty, Betsy Rachel Jacob, Ganesan Paramasivam, Mohammad

Bodiuzzaman, Wakeel Ahmed Dar and Thalappil Pradeep*

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of

Excellence (TUE)

Indian Institute of Technology Madras

Chennai, 600 036, India

E-mail: pradeep@iitm.ac.in

Table of Contents

List of figures	Description	Page number
S1	UV-vis absorption spectra and ESI MS of Ag ₂₅ and MAg ₂₄ where 'M' is Ni. Pd or Pt	3-4
\$2	XPS spectrum of NiAg ₂₈ and time-dependent absorption spectra	4-5
	of NiAg24, NiAg28 and Ag29	
\$3	ESI MS of PdAg ₂₈ measured under low voltage and low gas pressure conditions	5
S4	XPS and SEM/EDS spectra of PdAg ₂₈	6
S5	UV-vis absorption spectrum and ESI MS of PtAg ₂₈	7

S6	The collision-induced dissociation mass spectra of	8
	$[NiAg_{28}(BDT)_{12}]^{4-}$ and $[PdAg_{28}(BDT)_{12}]^{4-}$	
S7	Theoretical structures of various isomers of NiAg ₂₈ and PdAg ₂₈	9-10
S8	Concentration-dependent ESI MS of the reaction between	11
	PdAg ₂₈ and Au ₂₅	
S9	Theoretical and experimental isotopic distributions of	11
	PdAu ₁₂ Ag ₁₆	
S10	Time-dependent UV-vis absorption spectra of intercluster	12
	reaction between PdAg ₂₈ and Au ₂₅	
S11	Theoretical and experimental isotopic distributions of	12
	PtAu ₁₂ Ag ₁₆	
S12	Time-dependent ESI MS of intercluster reaction between PtAg ₂₈	13
	and Au ₂₅ showing the reaction at Au ₂₅	
\$13	Time-dependent UV-vis absorption spectra of intercluster	13
	reaction between PtAg ₂₈ and Au ₂₅	
S14	Time-dependent ESI MS of NiAg ₂₈ which show the formation	14
	of trimetallic NiAu _x Ag _{28-x}	
S15	Experimental and theoretical isotopic patterns of NiAu ₁₂ Ag ₁₆	14
S16	Concentration-dependent ESI MS of the reaction between Ag ₂₉	15
	and Au ₂₅	
S17	Time-dependent absorption spectra of the reaction between Ag ₂₉	15
	and Au ₂₅ at room temperature	
S18	Experimental and theoretical isotopic patterns of Au12Ag17	16
S19	Time-dependent ESI MS of the reaction between Ag ₂₉ and Au ₂₅	16
	at Au ₂₅ side (higher temperature)	
S20	Time-dependent UV-vis absorption spectra of the intercluster	17
	reaction between Ag ₂₉ and Au ₂₅	

S21	Three different DFT optimized geometric isomers of Au ₁₂ Ag ₁₇	17-18
	and their energies	

Supporting information 1:

Figure S1. (A) UV-vis absorption spectra and (B) ESI MS of Ag₂₅ (panel a/a⁻) and MAg₂₄ where 'M' is Ni, Pd and Pt (panel b/b⁻, c/c⁻ and d/d⁻). Upon doping of Ni, Pd and Pt in Ag₂₅, absorption features show gradual blue-shifts. (C) Time-dependent absorption spectra of (a) Ag₂₅ and (b) NiAg₂₄ which were kept at room temperature.

Supporting information 2:

Figure S2. (A) XPS spectrum of NiAg₂₈ shows the presence of Ni 2p, Ag 3d, P 2p and S 2p. (B) Time-dependent absorption spectra of (a) NiAg₂₄ and (b) NiAg₂₈ at room temperature. (C) Time-dependent absorption spectra of (a) Ag₂₉ and (b) NiAg₂₈ at 60°C temperature.

Supporting information 3:

Figure S3. ESI MS of PdAg₂₈ measured under low voltage and low gas pressure conditions shows the presence of four PPh₃ ligands.

Supporting information 4:

Figure S4. (A) XPS spectrum of PdAg₂₈ shows the presence of Pd, Ag, P and S. Pd 3d_{5/2} peak arises at 337.5 eV which is higher than that of Pd (0) (335.5 eV) and Ag 3d_{5/2} peak arises at 368.5 eV which is also at a higher value than that of Ag (0) (367.9 eV) which manifest a partial charge transfer from Pd to Ag. (B) SEM image of PdAg₂₈ and EDS mapping of C, P, S, Ag and Pd.

Supporting information 5:

Figure S5. (A) UV-vis absorption spectrum of $PtAg_{28}$ which possesses two prominent features at 425 and 491 nm. The absorption peaks are 22 nm blue-shifted from that of Ag_{29}. (B) ESI MS of $PtAg_{28}$ exhibits two intense peaks at m/z 1224 and 1632 which correspond to $[PtAg_{28}(BDT)_{12}]^{4-}$ and $[PtAg_{28}(BDT)_{12}]^{3-}$, respectively. Theoretical and experimental isotopic distributions of $[PtAg_{28}(BDT)_{12}]^{4-}$ are shown in the inset of (B) which are well fitted.

Supporting information 6:

Figure S6. The collision-induced dissociation mass spectra of (A) $[NiAg_{28}(BDT)_{12}]^{4-}$ (m/z 1190) and (B) $[PdAg_{28}(BDT)_{12}]^{4-}$ (m/z 1202).

Supporting information 7:

Figure S7. Theoretical structures of different isomers of (A) NiAg₂₈ and (B) PdAg₂₈. Mainly four isomers of NiAg₂₈ and PdAg₂₈ were observed and three of them are shown here; (a) Ni/Pd atom is doped in the icosahedral surface, (b) Ni/Pd atom is doped in crown staples and (c) Ni/Pd atom replaces Ag atom which is bonded to PPh₃.

Supporting information 8:

Figure S8. Concentration-dependent ESI MS of the reaction between PdAg₂₈ and Au₂₅ using 4:1, 2:1, 1:1, 1:2 and 1:5 molar ratios at three different time intervals, (A) 1 h, (B) 6 h and (C) 24 h.

Supporting information 9:

Figure S9. The experimental isotopic distribution (black trace) of PdAu₁₂Ag₁₆ which matches exactly with the theoretical one (red trace).

Supporting information 10:

Figure S10. Time-dependent UV-vis absorption spectra of intercluster reaction between PdAg₂₈ and Au₂₅ using a 1:5 molar ratio.

Supporting information 11:

Figure S11. The experimental isotopic distribution (blue trace) of PtAu₁₂Ag₁₆ which matches exactly with the theoretical one (red trace).

Supporting information 12:

Figure 12. Time-dependent ESI MS of intercluster reaction between $PtAg_{28}$ and Au_{25} (1:5 molar ratio) showing the reaction at Au_{25} side which show formation of Ag_xAu_{25-x} (x= 0-7). Supporting information 13:

Figure S13. Time-dependent UV-vis absorption spectra of intercluster reaction between PtAg₂₈ and Au₂₅ using a 1:5 molar ratio.

Supporting information 14:

Figure S14. Time-dependent ESI MS of intercluster reaction between NiAg₂₈ and Au₂₅ using a 1:5 molar ratio which show the formation of trimetallic NiAu_xAg_{28-x}.

Supporting information 15:

Figure S15. Experimental and theoretical isotopic patterns (green trace) of NiAuAg₂₇ (red trace) fit well with each other.

Supporting information 16:

Figure S16. Concentration-dependent ESI MS of the reaction between Ag₂₉ and Au₂₅ using 1:1, 1:5 and 1:10 molar ratios at 6h which lead to the formation of Au_xAg_{29-x} (x = 1-8).

Supporting information 17:

Figure S17. Time-dependent absorption spectra of the reaction between Ag₂₉ and Au₂₅ (1:5 ratio) at room temperature resulting in the formation of Au_xAg_{29-x} (x = 1-12).

Supporting information 18:

Figure S18. Experimental and theoretical isotopic patterns of Au12Ag17 which shows good agreement with each other.

Supporting information 19:

Figure S19. Time-dependent ESI MS of the reaction between Ag_{29} and Au_{25} (1:5 ratio) at the Au_{25} side (higher temperature).

Supporting information 20:

Figure S20. Time-dependent UV-vis absorption spectra of the intercluster reaction between Ag₂₉ and Au₂₅ using a 1:5 molar ratio.

Supporting information 21:

Figure S21. Three different geometric isomers of $Au_{12}Ag_{17}$; (a) 12 Au atoms are doped in the icosahedral surface, (b) among 12 Au atoms, 8 Au atoms are doped in the crown staples and remaining 4 Au atoms are doped in Ag-PPh₃ motifs and (c) 12 Au atoms are doped in the crown motifs.