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Figure S1. (A) UV-vis absorption spectra and (B) ESI MS of Ag25 (panel a/a´) and MAg24 

where ‘M’ is Ni, Pd and Pt (panel b/b´, c/c´ and d/d´). Upon doping of Ni, Pd and Pt in Ag25, 

absorption features show gradual blue-shifts. (C) Time-dependent absorption spectra of (a) 

Ag25 and (b) NiAg24 which were kept at room temperature.  

Supporting information 2: 

          

400 600 800 1000
0.0

0.5

1.0

400 600 800 1000
0.0

0.5

1.0

a)
A

b
so

rb
an

ce

Wavelength (nm)

b)

A
b

so
rb

an
ce

Wavelength (nm)

24%

45%

Ag25(DMBT)18

After 2 d

NiAg24(DMBT)18

After 2 d

C)

365 370 375 380 125 130 135 140

155 160 165 170 175 855 870 885

B. E (eV)

B. E (eV)

3d5/2

3d3/2

368.6

374.7

Ag 3d P 2p

2p3/2

2p1/2

132.0

132.9

S 2p

2p3/2

2p1/2

163.0

164.2

Ni 2p

853.9
871.0

2p3/2

2p3/2

satellite

2p1/2

860.9

2p3/2

satellite

877.0

A)



5 
 

   

      

Figure S2. (A) XPS spectrum of NiAg28 shows the presence of Ni 2p, Ag 3d, P 2p and S 2p. 

(B) Time-dependent absorption spectra of (a) NiAg24 and (b) NiAg28 at room temperature. (C) 

Time-dependent absorption spectra of (a) Ag29 and (b) NiAg28 at 60°C temperature.  

Supporting information 3: 

 

400 600 800

0.3

0.6

0.9

b)

A
b

so
rb

an
ce

Wavelength (nm)

After 2 d

NiAg28(BDT)12(PPh3)4

B)

400 600 800 1000
0.0

0.5

1.0

a)

A
b

so
rb

an
ce

Wavelength (nm)

45%

NiAg24(DMBT)18

After 2 d

400 600 800
0.0

0.3

0.6

400 600 800

0.5

1.0

A
b

so
rb

an
ce

Wavelength (nm)

A
b

so
rb

an
ce

Wavelength (nm)

a) b)
Ag29(BDT)12(PPh3)4

After heating at 

60  C for 1 h

NiAg28(BDT)12(PPh3)4

After heating at 

60  C for 1 h
17%

C)

1200 1300 1400 1500 1600

[PdAg28(BDT)12(PPh3)x]
4- (X= 0-4)

X = 0

X = 1

X = 2

X = 3
X = 4

m/z



6 
 

Figure S3. ESI MS of PdAg28 measured under low voltage and low gas pressure conditions 

shows the presence of four PPh3 ligands. 
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Figure S4. (A) XPS spectrum of PdAg28 shows the presence of Pd, Ag, P and S. Pd 3d5/2 peak 

arises at 337.5 eV which is higher than that of Pd (0) (335.5 eV) and Ag 3d5/2 peak arises at 

368.5 eV which is also at a higher value than that of Ag (0) (367.9 eV) which manifest a partial 

charge transfer from Pd to Ag. (B) SEM image of PdAg28 and EDS mapping of C, P, S, Ag and 

Pd.  
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Figure S5. (A) UV-vis absorption spectrum of PtAg28 which possesses two prominent features 

at 425 and 491 nm. The absorption peaks are 22 nm blue-shifted from that of Ag29. (B) ESI 

MS of PtAg28 exhibits two intense peaks at m/z 1224 and 1632 which correspond to 

[PtAg28(BDT)12]4- and [PtAg28(BDT)12]3-, respectively. Theoretical and experimental isotopic 

distributions of [PtAg28(BDT)12]4- are shown in the inset of (B) which are well fitted.  
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Figure S6. The collision-induced dissociation mass spectra of (A) [NiAg28(BDT)12]4- (m/z 

1190) and (B) [PdAg28(BDT)12]4- (m/z 1202).  
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Figure S7. Theoretical structures of different isomers of (A) NiAg28 and (B) PdAg28. Mainly 

four isomers of NiAg28 and PdAg28 were observed and three of them are shown here; (a) Ni/Pd 

atom is doped in the icosahedral surface, (b) Ni/Pd atom is doped in crown staples and (c) 

Ni/Pd atom replaces Ag atom which is bonded to PPh3.  
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Figure S8. Concentration-dependent ESI MS of the reaction between PdAg28 and Au25 using 

4:1, 2:1, 1:1, 1:2 and 1:5 molar ratios at three different time intervals, (A) 1 h, (B) 6 h and (C) 

24 h.  
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Figure S9. The experimental isotopic distribution (black trace) of PdAu12Ag16 which matches 

exactly with the theoretical one (red trace).  
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Figure S10. Time-dependent UV-vis absorption spectra of intercluster reaction between 

PdAg28 and Au25 using a 1:5 molar ratio.   
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Figure S11. The experimental isotopic distribution (blue trace) of PtAu12Ag16 which matches 

exactly with the theoretical one (red trace).  
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Figure 12. Time-dependent ESI MS of intercluster reaction between PtAg28 and Au25 (1:5 

molar ratio) showing the reaction at Au25 side which show formation of AgxAu25-x (x= 0-7).  
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Figure S13. Time-dependent UV-vis absorption spectra of intercluster reaction between 

PtAg28 and Au25 using a 1:5 molar ratio.  
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Figure S14. Time-dependent ESI MS of intercluster reaction between NiAg28 and Au25 using 

a 1:5 molar ratio which show the formation of trimetallic NiAuxAg28-x.  
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Figure S15. Experimental and theoretical isotopic patterns (green trace) of NiAuAg27 (red 

trace) fit well with each other. 
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Figure S16. Concentration-dependent ESI MS of the reaction between Ag29 and Au25 using 

1:1, 1:5 and 1:10 molar ratios at 6h which lead to the formation of AuxAg29-x (x = 1-8).  
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Figure S17. Time-dependent absorption spectra of the reaction between Ag29 and Au25 (1:5 

ratio) at room temperature resulting in the formation of AuxAg29-x (x = 1-12).  
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Figure S18. Experimental and theoretical isotopic patterns of Au12Ag17 which shows good 

agreement with each other.  
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Figure S19. Time-dependent ESI MS of the reaction between Ag29 and Au25 (1:5 ratio) at the 

Au25 side (higher temperature).  
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Figure S20. Time-dependent UV-vis absorption spectra of the intercluster reaction between 

Ag29 and Au25 using a 1:5 molar ratio.  
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Figure S21. Three different geometric isomers of Au12Ag17; (a) 12 Au atoms are doped in the 

icosahedral surface, (b) among 12 Au atoms, 8 Au atoms are doped in the crown staples and remaining 

4 Au atoms are doped in Ag-PPh3 motifs and (c) 12 Au atoms are doped in the crown motifs.  

 

 

 


