$[Ag_{15}H_{13}(DPPH)_5]^{2+}$ and $[Ag_{27}H_{22}(DPPB)_7]^{3+}$: Two New Hydride and Phosphine Co-Protected Clusters and Their Fragmentation Leading to Naked Clusters, Ag_{13}^+ and Ag_{25}^+

Madhuri Jash, Esma Khatun, Papri Chakraborty, Chennu Sudhakar and Thalappil Pradeep*

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

*To whom correspondence should be addressed. E-mail: pradeep@iitm.ac.in

Table of Contents

Name	Description	Page No.
S 1	Characterization of [Ag ₁₅ D ₁₃ (DPPH) ₅] ²⁺ cluster	S 3
S2	Time dependent UV-vis spectra of sample I during synthesis	S4
S 3	Time dependent ESI MS of sample I during synthesis	S5
S4	¹ H NMR spectra of DPPH and [Ag ₁₅ H ₁₃ (DPPH) ₅] ²⁺ cluster	S6
\$5	³¹ P NMR spectra of DPPH and [Ag ₁₅ H ₁₃ (DPPH) ₅] ²⁺ cluster	S7
S 6	XPS spectra of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ cluster	S 8
S7	SEM EDS of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ cluster	S9
S 8	TEM analysis of [Ag ₁₅ H ₁₃ (DPPH) ₅] ²⁺ cluster	S10
S9	Comparison of the fragmentation pathway of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ and $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ clusters	S11
S10	MS/MS of $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ cluster	S12
S11	Fragmentation pathway of [Ag ₁₅ H ₁₃ (DPPH) ₅] ²⁺ cluster	S13
S12	Characterization of [Ag ₂₇ D ₂₂ (DPPB) ₇] ³⁺ cluster	S14
S 13	¹ H NMR spectra of DPPB and [Ag ₂₇ H ₂₂ (DPPB) ₇] ³⁺ cluster	S15
S14	³¹ P NMR spectra of DPPB and [Ag ₂₇ H ₂₂ (DPPB) ₇] ³⁺ cluster	S16
S15	XPS spectra of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster	S17
S16	SEM EDS of [Ag ₂₇ H ₂₂ (DPPB) ₇] ³⁺ cluster	S18
S17	TEM analysis of [Ag ₂₇ H ₂₂ (DPPB) ₇] ³⁺ cluster	S19
	1	1

S18	Comparison between the experimental and calculated spectra of Ag_{25}^+	S20
S19	Fragmentation pathway of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster	S21

Characterization of [Ag₁₅D₁₃(DPPH)₅]²⁺ cluster:

Figure S1. (A) Experimental mass spectrum (pink trace) of $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ cluster match well with its calculated (black trace) isotopic pattern. (B) The ESI MS of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ and $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ showing the mass shift due to the exchange of hydrogen atoms with deuterium atoms.

Time dependent UV-vis spectra of sample I during synthesis:

Figure S2. Time dependent UV-vis spectra during the synthesis of sample **I** with their corresponding photographs in inset. The photographs show that during 1 h of synthesis with continous stirring, the color oft he solution remains green (1). Whereas, by stopping the stirring after 1 h, the color changed immidiately from green to yellowish green within 5 min (2). After 15 min of stopping stirring, the color became fully dark yellow (3). The bottle labled 3 also represent the same solution when the reaction was continously stirred for 2 h.

Time dependent ESI MS of sample I during synthesis:

Figure S3. Time dependent ESI MS during the synthesis of sample **I** with their corresponding photographs (on the left). The ESI MS of green solution (1) shows the presence of $[Ag_{22}H_{21}(DPPH)_6]^{2+}$ cluster during 1 h stirring. Whereas, after 5 min of stopping the stirring the green color was converted to yellowish green (2) and the intensity of $[Ag_{22}H_{21}(DPPH)_6]^{2+}$ decreased significantly in the ESI MS along with increased intensity of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ (sample **I**).

¹H NMR spectra of DPPH and [Ag₁₅H₁₃(DPPH)₅]²⁺ cluster:

Figure S4. ¹H NMR spectra of DPPH and $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ clusters. Broad peaks of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ at 1.14, 3.99 and 4.62 ppm confirm the presence of hydride protected clusters.

Figure S5. ³¹P NMR spectra of DPPH and $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ clusters. The ³¹P signal at -16.16 ppm for DPPH ligand disappears in the $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ cluster due to the binding of liagnds with metal core, which is also confirmed by the appearence of new broad peaks at -4.58 and -3.07 ppm in the nanoclusters. Peaks at 23.79 and 33.27 ppm are due to phosphine oxides.

XPS spectra of [Ag₁₅H₁₃(DPPH)₅]²⁺ cluster:

Figure S6. (A) XPS survey spectrum of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ showing all the expected elements (Ag, P and C). (B) The Ag 3d region. Ag $3d_{5/2}$ at 368.04 eV indicates the presence of Ag(0) state. (C) P 2p region of the nanocluster. P $2p_{3/2}$ appears at 133.24 eV.

SEM EDS of [Ag₁₅H₁₃(DPPH)₅]²⁺ cluster:

Figure S7. SEM EDS of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ cluster with quantification of elements. Ag:P atomic ratio matches well with the Ag:P ratio obtained from the molecular formula of the cluster.

TEM analysis of [Ag₁₅H₁₃(DPPH)₅]²⁺ cluster:

Figure S8. (A) TEM image of the $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ cluster. Scale bar is 10 nm. (B) Particle distribution shows an average size of 1.46 ± 0.13 nm for this nanocluster.

Comparision of the fragmentation pathway $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ clusters:

thway of [Ag₁₅

 $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ and

at different collision energies during the formation of naked cluster, Ag_{13}^+ by another possible pathway. The mass shift ($\Delta m/z$) in between the blue and pink traces confirms the presence of hydrogen in the particular fragmented ions. The isotopic distribution of Ag_{13}^+ confirms the absence of hydrogen atoms, which also matches with the calculated pattern (black trace).

MS/MS of [Ag₁₅D₁₃(DPPH)₅]²⁺ cluster:

Figure S10. Collision energy dependent MS/MS spectra of the $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ cluster. Increase in collision energy from 5 to 110 (in instrumental units) results in the detachment of deuterium, DPPH and $[AgDPPH]^+$ from $[Ag_{15}D_{13}(DPPH)_5]^{2+}$ resulting in Ag_{13}^+ . Fragments labeled in brown lead to the formation of naked cluster, Ag_{13}^+ .

Fragmentation pathway of [Ag₁₅H₁₃(DPPH)₅]²⁺ cluster:

Figure S11. Collision energy dependent fragmentation pathway of $[Ag_{15}H_{13}(DPPH)_5]^{2+}$ cluster towards the formation of naked cluster, Ag_{13}^+ . Hydrogen and DPPH loss do not involve any alternation of charge state of the resulting cluster. Whereas, $[AgDPPH]^+$ loss results in the reduction of charge state from +2 to +1.

Figure S12. (A) Experimental mass spectrum (red trace) of $[Ag_{27}D_{22}(DPPB)_7]^{3+}$ cluster and it matches well with its calculated (black trace) isotopic pattern. (B) The ESI MS of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ and $[Ag_{27}D_{22}(DPPB)_7]^{3+}$ showing a mass shift due to the exchange of hydrogen atoms with deuterium atoms.

¹H NMR spectra of DPPB and [Ag₂₇H₂₂(DPPB)₇]³⁺ cluster:

Figure S13. ¹H NMR spectra of DPPB and $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ clusters. Broad peaks of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ at 1.77 and 2.18 ppm confirm the presence of hydride protected nanoclusters.

³¹P NMR spectra of DPPB and [Ag₂₇H₂₂(DPPB)₇]³⁺ cluster:

Figure S14. ³¹P NMR spectra of DPPB and $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ clusters. The ³¹P signal at -16.15 ppm for DPPB ligand disappears in the $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster due to the binding of liagnds with the metal core, which is also confirmed by the appearence of new broad peaks at -5.02 ppm in the nanoclusters. Peak at 34.65 ppm is due to phosphine oxides.

XPS spectra of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster:

Figure S15. (A) XPS survey spectrum of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ showing all the expected elements (Ag, P and C). (B) Ag 3d spectrum of the nanocluster. Ag $3d_{5/2}$ appears at 368.22 eV indicating the presence of Ag(0) state. (C) P 2p spectrum of the nanocluster. P $2p_{3/2}$ appears at 133.03 eV.

SEM EDS of [Ag₂₇H₂₂(DPPB)₇]³⁺ cluster:

Figure S16. SEM EDS of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster with quantification of elements. Ag:P atomic ratio matches well with the Ag:P ratio obtained from the molecular formula of the cluster.

TEM analysis of [Ag₂₇H₂₂(DPPB)₇]³⁺ cluster:

Figure S17. (A) TEM image of the $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster. Scale bar is 10 nm. (B) Particle distribution shows an average size of 1.72 ± 0.14 nm for this nanocluster.

Comparison between the experimental and the calculated spectra of Ag₂₅⁺:

Figure S18. Experimental mass spectrum (green trace) of Ag_{25}^+ matches well with the calculated (black trace) isotopic pattern.

Fragmentation pathway of [Ag₂₇H₂₂(DPPB)₇]³⁺ cluster:

Figure S19. Collision energy dependent fragmentation pathway of $[Ag_{27}H_{22}(DPPB)_7]^{3+}$ cluster towards the formation of naked cluster, Ag_{25}^+ . Hydrogen and DPPB loss do not involve any alternation of charge state of the resulting cluster. Whereas, $[AgDPPB]^+$ loss results in the reduction of charge state from +3 to +2 and from +2 to +1.