Supporting Information

Dithiol-Induced Contraction in Ag₁₄ Clusters and Its Manifestation in Electronic Structure

Mohammad Bodiuzzaman^a, Esma Khatun^a, Korath Shivan Sugi^a, Ganesan Paramasivam^a, Waakel Ahmed Dar^a, Sudhadevi Antharjanam^b and Thalappil Pradeep^{a*}

E-mail: pradeep@iitm.ac.in

a. Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India

b. Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras,

Chennai 600036, India

Name	Description		
Table S1	Bader charge analysis	2	
Table S2	Crystal data and structure refinement	3	
Table S3	Elemental analysis	4	
Figure S1	Structure of octahedron formed by the centroids of the benzene	5	
	rings		
Figure S2	Different environments of silver atoms in Ag ₁₄ DT	6	
Figure S3	Unit cell dimensions of $Ag_{14}DT$ and $Ag_{14}MT$	7	
Figure S4	$\pi\pi$ stacking interactions in Ag ₁₄ DT	8	
Figure S5	Supramoleular interactions of Ag ₁₄ MT and Ag ₁₄ DT	9	
Figure S6	SEM EDS of a single crystal		
Figure S7	Thermal stability of Ag ₁₄ MT and Ag ₁₄ DT		
Figure S8	Optimized structure of Ag ₁₄ DT		
Figure S9	Density of states of inner core and outer shell of Ag ₁₄ cluster	13	

Ag ₆ Inner Shell	Bader Charges (e)		
Ag ₂	0.171		
Ag ₅	0.179		
Ag ₇	0.158		
Ag ₉	0.170		
Ag ₁₂	0.184		
Ag ₁₄	0.157		
Average	0.170		
Ag ₈ Outer Shell			
Ag ₁	0.303		
Ag ₃	0.276		
Ag ₄	0.304		
Ag ₆	0.307		
Ag ₈	0.303		
Ag ₁₀	0.253		
Ag ₁₁	0.303		
Ag ₁₃	0.302		
Average	0.294		
Sulfur atoms			
S ₁₅	-0.282		
S ₁₆	-0.295		
S ₁₇	-0.280		
S ₁₈	-0.279		
S ₁₉	-0.282		
S ₂₀	-0.298		
S ₂₁	-0.281		
S ₂₂	-0.283		
S ₂₃	-0.289		
S ₂₄	-0.294		
S ₂₅	-0.288		
S ₂₆	-0.295		
Average	-0.287		
Phosphorus			
P ₂₇	1.550		
P ₂₈	1.563		
P ₂₉	1.532		
P ₃₀	1.537		
P ₃₁	1.523		
P ₃₂	1.576		
P ₃₃	1.505		
P ₃₄	1.555		
Average	1.543		

Table S1. Bader charges for Ag, S and P atoms in Ag ₁₄ DT cluster	er
--	----

Table S2. Crystal data and structure refinement	for Ag14-3.			
Identification code	AG14-3			
Empirical formula	C198 H159 Ag14 P9 S12			
Formula weight	4711.87			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Trigonal			
Space group	R-3			
Unit cell dimensions	a = 23.9695(12) Å	γ= 90°.		
	b = 23.9695(12) Å	β= 90°.		
	c = 28.297(2) Å	$\gamma = 120^{\circ}$.		
Volume	14079.6(18) Å ³			
Ζ	3			
Density (calculated)	1.667 Mg/m ³			
Absorption coefficient	1.685 mm ⁻¹			
F(000)	6996			
Crystal size	0.150 x 0.120 x 0.100 mm ³			
Theta range for data collection	3.485 to 18.033°.			
Index ranges	-20<=h<=20, -20<=k<=20, -24<=l<=24			
Reflections collected	46201			
Independent reflections	2151 [R(int) = 0.3070]			
Completeness to theta = 18.033°	99.3 %			
Absorption correction	multi-scan			
Max. and min. transmission	0.74 and 0.64			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2151 / 493 / 379			
Goodness-of-fit on F ²	1.020			
Final R indices [I>2sigma(I)]	R1 = 0.0606, wR2 = 0.1184			
R indices (all data)	R1 = 0.1234, wR2 = 0.1455			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.595 and -0.426 e.Å ⁻³			

Table S3	. Results	of elemental	analysis	of Ag ₁₄
----------	-----------	--------------	----------	---------------------

Sample	C _{Exp.}	C _{cal.}	H _{Exp.}	H _{Cal.}	S _{Exp.}	S _{cal}
	(content %)	(content %)				
Ag ₁₄	48.91	48.54	3.52	3.24	9.11	8.64

Figure S1 (A) The orientation of the primary ligands in a cluster. Centroids of the six benzenedithiol ligands form an octahedron. Green dotted lines are drawn to show the octahedron. (B) The comparison of the S-Ag-S bond angles in $Ag_{14}DT$ and $Ag_{14}MT$.

Figure S2 Different environments of silver in Ag_{14} are noted in different colors. Blue shows the inner shell atoms and in outer shell, there are two types of silver atoms as shown in violet and grey.

Figure S3 Comparison of crystal structures of Ag_{14} clusters. (A) and (C) Unit cell representations of both the clusters. The number of molecules in a unit cell is not same as evident from the packing. (B) and (D) Full structures of $[Ag_{14}(BDT)_6(PPh_3)_8]$ and $[Ag_{14}(SPhF_2)_6(PPh_3)_8]$, respectively. The octahedral core is shown in space filling and carbon atoms in wireframe model. Hydrogen atoms are omitted for clarity.

Figure S4 (A) π ... π interactions between the benzene rings. BDT are shown in blue. (B) π ... π interactions result in the zigzag structure.

Figure S5 (A) Supramolecular interactions between the clusters. Interactions between the electrons of benzene rings are shown in blue. Intracluster interactions in Ag₁₄DT where C-H... π interactions are shown by green dotted lines. (B) Intercluster interactions in Ag₁₄MT. H...H vdw forces and C-H... π interactions are shown by green dotted lines. In Ag₁₄MT π ... π interactions are observed in the cluster. The nature of surface structure dictates the supramolecular interactions.

Figure S6 (A) SEM image of the single crystal. (B) SEM EDS shows the presence of Ag, S, and P as major elements. (C) Elemental mapping of the crystal which shows the uniformity of the elements in the crystal.

Figure S7 Comparison of thermal stability of $Ag_{14}DT$ and $Ag_{14}MT$ by time-dependent UV/Vis spectroscopy.

Figure S8 Optimized structure of $Ag_{14}DT$ in reduced ligands. Phenyl rings of the PPh₃ were reduced to $P(CH_3)_3$.

Figure S9 Density of states of inner core and outer shell of Ag_{14} cluster.