Facile Crystallization of Ice I_h via Formaldehyde Hydrate in Ultrahigh Vacuum under Cryogenic Conditions

Jyotirmoy Ghosh,^{\dagger} *Gaurav Vishwakarma*,^{\dagger} *Subhadip Das*,^{\dagger} *and Thalappil Pradeep*^{\dagger , *}

[†]DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department

of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

AUTHOR INFORMATION

Corresponding Author

Corresponding author: *E-mail: pradeep@iitm.ac.in

Name	Description	Page			
		number			
Figure S1	Temperature-dependent RAIR spectra of 300 MLs	S 3			
	formaldehyde:H ₂ O (1:1).				
Figure S2	Temperature-dependent RAIR spectra of 150 MLs of pure	S4			
	formaldehyde film.				
Figure S3	Full scale RAIR spectrum of 300 MLs of	S5			
	formaldehyde:H ₂ O (1:1) at 100 K.				
Figure S4	Comparison of O-H stretching bands of ice $I_{h}% =1, I_{h}$ film and	S 6			
	dissociated formaldehyde hydrate film				
Figure S5	Time-dependent RAIR spectra of 150 MLs of solid H ₂ O	S7			
	film at 120 K, and 130 K.				
Figure S6	Time-dependent RAIR spectra of 150 MLs of solid H ₂ O				
	film at 135 K in the O-H stretching region.				
Figure S7	TPD-MS spectra of 150 MLs of pure formaldehyde.	S9			
Figure S8	Time-dependent RAIR spectra of 300 MLs of	S10			
	formaldehyde:H ₂ O (1:1) at 130 K.				

Table of contents

Figure S9	Time-dependent RAIR spectra of 300 MLs of	S 8				
	formaldehyde:H ₂ O (1:1) at 132 K.					
Figure S10	Time-dependent RAIR spectra of 300 MLs of	S9				
	formaldehyde:H ₂ O (1:1) at 135 K.					
Figure S11	Time-dependent RAIR spectra of 300 MLs of	S10				
	formaldehyde:H ₂ O (1:1) at 137 K.					
Figure S12	Time-dependent RAIR spectra of formaldehyde:HDO (5%	S11				
	D ₂ O in H ₂ O) at 130 K.					
Figure S13	Time-dependent RAIR spectra of formaldehyde:HDO (5%	S12				
	D ₂ O in H ₂ O) at 132 K.					
Figure S14	Time-dependent RAIR spectra of formaldehyde:HDO (5%	S13				
	D ₂ O in H ₂ O) at 135 K.					
Figure S15	Time-dependent RAIR spectra of formaldehyde:HDO (5%	S14				
	D ₂ O in H ₂ O) at 137 K.					
Table S1	Different crystallization parameters of Ice I _h at 130, 132,	S15				
	135, and 137 K.					

Supporting Information 1:

Figure S1. Temperature-dependent RAIR spectra of 300 MLs of formaldehyde: H_2O (1:1) in the (a) C=O and (b) O-H stretching regions. The mixture was co-deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹.

Supporting Information 2:

Figure S2. Temperature-dependent RAIR spectra of 150 MLs of pure formaldehyde in the C=O stretching region. The formaldehyde vapor was deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹.

Supporting Information 3:

Figure S3. Full scale RAIR spectrum of 300 MLs of formaldehyde:H₂O (1:1) at 100 K.

Supporting Information 4:

Figure S4. Comparison of O-H stretching bands of 150 MLs of solid crystalline H_2O film, which was heated to 155 K to produce ice I_h (blue trace) and the resultant ice system left after the dissociation of formaldehyde hydrate at 135 K (red trace). Both of these experiments were carried out separately. Here, the similarity of the O-H stretching bands of these two systems suggest that dissociation of formaldehyde produces nothing but ice I_h .

Supporting Information 5:

Figure S5. Time-dependent RAIR spectra of 150 MLs of solid H_2O film at (a) 120 K, and (b) at 130 K in the O-H stretching region. The water vapor was deposited at 10 K on Ru(0001) substrate. The ice films were annealed at 2 K.min⁻¹ rate to the respective temperatures.

Figure S6. Time-dependent RAIR spectra of 150 MLs of solid H_2O film at 135 K in the O-H stretching region. The water vapor was deposited at 10 K on Ru(0001) substrate. The ice films were annealed at 2 K.min⁻¹ rate to the respective temperatures.

Supporting Information 7:

Figure S7. TPD-MS spectra of 150 MLs of pure formaldehyde. Ramping rate = 30 K.min⁻¹. Here, the intensities of HCO⁺ (m/z = 29) under these conditions are plotted.

Supporting Information 8:

Figure S8. Time-dependent RAIR spectra of 300 MLs of formaldehyde: H_2O (1:1) at 130 K in the (a) C=O stretching region, and (b) O-H stretching region. The mixture was co-deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹ to 130 K.

Supporting Information 9:

Figure S9. Time-dependent RAIR spectra of 300 MLs of formaldehyde: H_2O (1:1) at 132 K in the (a) C=O stretching region, and (b) O-H stretching region. The mixture was co-deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹ to 132 K.

Supporting Information 10:

Figure S10. Time-dependent RAIR spectra of 300 MLs of formaldehyde: H_2O (1:1) at 135 K in the (a) C=O stretching region, and (b) O-H stretching region. The mixture was co-deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹ to 135 K.

Supporting Information 11:

Figure S11. Time-dependent RAIR spectra of 300 MLs of formaldehyde: $H_2O(1:1)$ at 137 K in the (a) C=O stretching region, and (b) O-H stretching region. The mixture was co-deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹ to 137 K.

Supporting Information 12:

Figure S12. Time-dependent RAIR spectra of 300 MLs of formaldehyde:HDO (5% D_2O in H_2O) at 130 K in the (a) decoupled O-D stretching region, and (b) O-H stretching region. The mixture was co-deposited on Ru(0001) substrate at 10 K, and annealed at a rate of 2 K.min⁻¹ to 130 K. The vertical lines at a fixed wavenumber are used to measure the absorbance changes with time, which was further utilized for calculation of crystallization fraction.

Supporting Information 13:

Figure S13. Time-dependent RAIR spectra of 300 MLs of formaldehyde:HDO (5% D_2O in H_2O) at 132 K in the (a) decoupled O-D stretching region, and (b) O-H stretching region.

Supporting Information 14:

Figure S14. Time-dependent RAIR spectra of 300 MLs of formaldehyde:HDO (5% D_2O in H_2O) at 135 K in the (a) decoupled O-D stretching region, and (b) O-H stretching region.

Supporting Information 15:

Figure S15. Time-dependent RAIR spectra of 300 MLs of formaldehyde:HDO (5% D_2O in H_2O) at 137 K in the (a) decoupled O-D stretching region, and (b) O-H stretching region.

	Temperature (K)	n	Rate constant; k (s ⁻¹)
O-H stretching	130	1.65	3.07×10 ⁻⁵
	132	1.60	3.47×10 ⁻⁵
	135	1.59	1.52×10 ⁻⁴
	137	1.39	3.58×10 ⁻⁴
O-D stretching	130	1.64	3.38×10 ⁻⁵
	132	1.52	3.94×10 ⁻⁵
	135	1.50	1.65×10 ⁻⁴
	137	1.34	4.01×10 ⁻⁴

Table S1: The parameters for crystallization of ice I_h during the dissociation of formaldehyde hydrate at different temperatures.