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ABSTRACT: In this letter, we demonstrate a sustainable, fast, and
facile room temperature synthesis of plasmonic nanoparticles and
luminescent nanoclusters of gold. The synthesis was performed
using an affordable, easy to build, and robust triboelectric
generator (TG). The electricity generated by the TG was
transferred to the solution continuously to synthesize gold
nanoclusters (AuNCs). The obtained AuNCs had extremely
narrow size distributions with mean particle sizes of ∼2 nm and
showed bright pink luminescence under UV light. The approach
was also extended to synthesize plasmonic gold nanoparticles
(AuNPs). With this method, the synthesis time could be reduced
from hours to several minutes without requiring any reducing
agents. Tunability in size by simple variation of synthetic
conditions and the consequent change in properties make this
method usable for diverse applications.
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■ INTRODUCTION

Electrostatic charging or tribocharging plays an important role
in a wide variety of fields.1−3 It has applications in areas such as
photocopying,4 energy harvesting and power generation,5

synthesis of materials,6 sensors,7 air filtration,8,9 X-ray
generation (triboluminescence) and imaging,10 and so
forth.11,12 The history of triboelectricity dates backs 300 BC
to ancient Greek philosophers like Plato.13 The word
“triboelectricity” was coined from two Greek words “tribo”
meaning to rub and “elektron” (latter electricity) meaning
amber.14,15 Tribocharging occurs when two materials are
rubbed against each other and separated. A triboelectric series
puts these materials based on the polarity and magnitude of
charge generated. The farther materials are in the triboelectric
series, the greater the amount of charge they acquire upon
contact. The one high up in the series gets positively charged,
while the other gets negatively charged. A triboelectric
generator (TG)5 or paper generator16 uses triboelectric
charging between materials and combines it with electrostatic
induction to generate electricity. An increase in current from
∼0.6 μA5 to ∼1.22 mA17 was recorded for TG, in less than a
decade, which is an increase of more than 3 orders of
magnitude. However, with these advancements, the complexity
has also increased which could limit its broader applicability.
As bulk material reduces to the nanometer scale, its physical

and chemical properties change drastically. These changes are

primarily a result of higher surface-to-volume ratios and
changes in the electronic structure. One of the characteristic
features of metal NPs is surface plasmon resonance (SPR),
which is the collective oscillation of their conduction band
electrons by the impinging light. This oscillation is responsible
for the intense color of noble metal nanoparticles (NPs). NPs
of this kind have sizes typically above 3 nm.18 Their physical
and chemical properties make them ideal for labeling and
detection of biomolecules,19 photodynamic therapy,20 colori-
metric sensing,21 surface-enhanced Raman spectroscopy
(SERS),22,23 carriers for drug delivery,24 catalysis,25 and
many more.26

Upon further scaling down the size to the subnanometer
regime, the particle size approaches the Fermi wavelength of
electrons, and the quantum size effect becomes predominant.
The quasi-continuous band transitions into molecule-like
discrete energy states exhibiting drastically different optical
and electronic properties compared to NPs and corresponding
bulk materials.27,28 At this scale, the electronic properties are
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susceptible to the size and shape of the metal, and every atom
counts in deciding the properties of such materials. This
regime of the matter is called nanoclusters (NCs).29 Properties
vary significantly in the NPs and NCs regimes. For example, in
the case of gold and silver, many NCs are visibly luminescent,
while NPs have no observable luminescence. The fluorescence
lifetimes and two-photon cross sections differ vastly for NCs
and NPs. Moreover, the fluorescent emission of metal NCs can
be tuned from infrared to UV regions by varying the core
sizes.27 These and several other unique properties have made
metal NCs useful in areas such as bioimaging,30 catalysis,31,32

chemical sensing,33 and so forth.28,34,35 With time, several
techniques to synthesize NPs and NCs have been devel-
oped.26,28,36 However, for NCs, the diversity possible makes it
challenging to synthesize specific NCs.
In this letter, we demonstrated a simple and affordable

means to synthesize AuNPs and AuNCs at room temperature
using TG. Some early reports on the reduction of metal ions to
NPs and bulk metal using triboelectric charging37−39 are
available. Besides, one study demonstrated the synthesis of
platinum NCs (PtNCs) using a triboelectric nanogenerator
(TENG).40 However, we did not find any reports concerning
the synthesis of AuNCs using TG. Further, in a previous
study,40 the synthesis of PtNCs was performed on a catalytic
surface which was also acting as an electrode. Moreover, the
work exploits40 the high surface activity of nanostructures like
nanosheets. On the other hand, in our work, neither did we use
any catalytic surface as an electrode nor exploit the high surface
activity of nanostructures like nanosheets. The current TG
requires a fewer number of components making it cost
effective to assemble. The design is simple and easy to use.

With several simple modifications to the existing design,16,41

we significantly improved the robustness and longevity,
enabling continuous synthesis of materials. The synthesis of
NPs and NCs does not require any reducing agent, and
capping agents were used to confine the size in the nanoscale
regime. Typically, in wet chemical synthesis of NCs, sodium
borohydride (NaBH4) is used as a reducing agent, which is
toxic and a health hazard. Since our synthesis procedure does
not require any reducing agent, the synthesis process is green
and sustainable. Moreover, the capping agent, 11-mercaptoun-
decanoic acid, used is nontoxic.
We discuss the synthesis of AuNPs, first followed by that of

AuNCs. Initial results showed reduction, which was further
established by spectroscopy and other techniques.

■ MATERIALS AND METHODS
Materials. Tetrachloroauric acid trihydrate (HAuCl4·3H2O) was

prepared starting from pure gold. The ligand, 11-mercaptoundecanoic
acid (11-MUA), was purchased from Sigma-Aldrich. Glutathione
reduced (GSH) was purchased from SRL. Mercaptosuccinic acid
(MSA) was purchased from Aldrich. Sodium hydroxide (NaOH)
pellets were purchased from Rankem. All the chemicals were used as
received without further purification.

Instrumentation. UV−vis spectra were recorded using a
PerkinElmer Lambda 25 instrument. High-resolution transmission
electron microscopy (HRTEM) images were collected using a JEOL
JEM 3010 (JEOL Japan) microscope. X-ray photoelectron spectros-
copy (XPS) was carried out using an Omicron ESCA probe
spectrometer with polychromatic Mg Kα X-rays (hν = 1253.6 eV).
Photoluminescence spectra were collected using a Jobin Yvon
NanoLog instrument. The current and voltage measurements were
performed using a Keithley 6514 system electrometer.

Figure 1. (A) Schematic of triboelectric generator setup for synthesis of NPs and NCs. (B) Short circuit current for the TG as a function of cycle of
operations. (C) Output peak voltage and peak current. (D) Dependence of peak power with increasing resistance.
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Design of TG. We chose the freestanding triboelectric layer
mode42 to operate the TG in view of its ease of operation. Two
aluminum (Al) tapes (thickness, t = ∼0.05 mm; area, A = 13 cm × 7
cm) acting as electrodes were pasted on office paper (t = ∼0.08 mm)
separated by 6 cm. In initial experiments, a PTFE (t = 0.5 mm; A = 11
cm × 6 cm) sheet was driven over these electrodes gently with the
help of a motor. The continuous rubbing of the PTFE on to the paper
keeps it negatively charged. The charged PTFE, when moved over the
electrodes, generates an electric current that could be transferred to a
load. However, the continuous rubbing by the PTFE also causes
scuffing of the Al, which significantly limits its long-term usability. To
address this issue, we attached a paper on top of the electrodes and
checked for the output current, as shown in Figure 1A. We did not
observe any loss in current, and with this addition, we were able to
increase the robustness and longevity of the system. The voltage and
current of the TG were measured at various resistances, as shown in
Figure 1C. The peak current stays almost the same up to 1 MΩ and

then began to drop as resistance increases. The peak voltage first rises
and then started to saturate at ∼1.6 V beyond 1 MΩ. The peak power
for the TG was calculated from the peak voltage and peak current.
The power rises with an increase in resistance, reaching a maximum at
∼1 MΩ and then starts to fall off. We found that the TG works best
when the distance between electrodes is of the order of the width of
the electret (PTFE) (Figure S1) used for rubbing.42 To transfer the
current into the solution, gold-coated silicon wafers were connected
to the TG and dipped into the solution as shown in Figure 1A. Table
S1 provides a brief comparison of the reported TENGs with our TG.

■ RESULTS AND DISCUSSION

Synthesis of AuNPs. For the synthesis of AuNPs, we used
11-MUA as a capping agent with HAuCl4 as a precursor. The
reaction volume was kept fixed to 2000 μL for all the
experiments. For this experiment, 750 μL of 1 mM 11-MUA in

Figure 2. (A) UV−vis spectrum of triboelectrically synthesized MUA-AuNPs. Inset shows an expanded view showing the plasmonic peak at ∼540
nm. (B) Photograph of the MUA-AuNPs (scale bar 50 nm). Inset shows lattice fringes.

Figure 3. Two types of particles were observed in HRTEM: (A) bigger (scale bar 20 nm) and (B) smaller (scale bar 5 nm). (C, D) Size
distributions for bigger and smaller MUA-AuNPs, respectively.
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ethanol and 1250 μL of 10 mM of HAuCl4 in distilled water
were mixed. The solution was connected to the TG at room
temperature with mild stirring, and electricity was applied for
30 min. During the synthesis, the current drawn by the
solution does not show a significant decrease from the short
circuit current, and the peak voltage of ∼5.5 mV was recorded
as shown in Figure S2. The solution was then centrifuged at
9000 rpm, and the precipitate was collected. The precipitate
was washed five times in ethanol to remove any excess Au(I)−
thiolate complexes and reactants present.43 Finally, the
precipitate was resuspended in water by adding a small
amount of NaOH.44−46 NaOH was added because the basic
pH allows the carboxyl groups to deprotonate and stabilize the
NP dispersion through electrostatic repulsion.44

A wine-red colored solution was obtained which showed an
absorption peak at ∼540 nm, indicating the presence of
AuNPs. The spectrum also showed a broad shoulder peak
centered near ∼350 nm, as shown in Figure 2A. There is a
slight shoulder in the red region, likely due to variations in
particle morphologies. Nearly spherical particles of ∼50 nm are
seen in the TEM. The inset of Figure 2B shows a d spacing of
∼0.24 nm, corresponding to the (111) plane of face-centered
cubic Au. From the HRTEM, we observed particles with two
kinds of distributions. The larger particles have average particle
sizes of ∼50 nm (Figure 3A,C), and smaller particles have
average sizes of ∼2 nm (Figure 3B,D).
Synthesis of AuNCs. The synthesis of AuNCs was carried

out similarly to that of the AuNPs, except for the change in the
reaction medium. The ligand, 11-MUA, is sparingly soluble in
water but highly soluble in ethanol. So, to reduce turbidity, we
chose ethanol as the reaction medium. We prepared 10 mM of
HAuCl4 in ethanol starting from a 330 mM aqueous solution

of HAuCl4. About 1 mM 11-MUA was prepared in ethanol.
The solution was prepared by mixing reactants in the same
volume as for the synthesis of AuNPs. After applying a current
for 30 min, the solution was centrifuged at 9000 rpm. The
obtained precipitate was washed several times in ethanol to
remove any excess of Au(I)−thiolate complexes and reactants
present. Finally, the precipitate was dispersed in water with
NaOH or NH4OH, to enhance solubility.43 The solution
showed bright luminescence under UV light. The HRTEM
images (Figure 4A, B) showed uniform MUA-AuNCs of ∼2
nm diameters. Figure 4D shows the UV−vis spectrum and
fluorescence spectrum of the synthesized particles. The UV−
vis spectrum showed an absorption at ∼560 nm and a shoulder
band at ∼360 nm. A bright pink luminescence was obtained
upon exposure to UV light. The fluorescence spectrum showed
a strong emission peak at 623 nm upon excitation at 355 nm,
which complies with the UV−vis spectrum. The characteristic
feature of thiolate-protected gold clusters appears around 610
nm.47 From the HRTEM images, we obtained a mean particle
size of ∼2 nm with a standard deviation, σ, of ∼0.19 nm
(Figure 4C). The XPS spectrum (Figure S4) showed a binding
energy of 84.3 eV, corresponding to Au 4f7/2, taking the C 1s
line of adventitious hydrocarbon at 284.8 eV as the reference.
The binding energy is between 84.0 eV for Au(0) and 85.0 eV
for Au(I), which indicates the presence of both Au(0) and
Au(I) species in NC. AuNCs with thiolate protection is known
to show the Au 4f7/2 feature around 84.45 eV.33 The S 2p3/2
feature appears at 163.3 eV, as expected in the case of thiolate-
protected clusters (Figure S5).
To further explore this process, we conducted experiments

with water-soluble ligands, GSH and MSA. They were chosen
as NPs made can form stable dispersions in water without the

Figure 4. (A) HRTEM image of MUA-AuNCs (scale bar 20 nm). (B) Magnified TEM images (scale bar 5 nm). (C) MUA-AuNPs size
distribution. (D) UV−vis absorption (green), fluorescence excitation (black, λem = 623 nm), and emission (red, λex = 355 nm) spectra of MUA-
AuNCs. The inset shows a photograph of MUA-AuNCs solution with UV light off (right) and on (left).
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use of a base. The gold solution with both GSH and MSA gave
NPs upon applying triboelectricity. The formations of GSH-
AuNPs and MSA-AuNPs were confirmed with UV−vis
spectroscopy with plasmonic peaks at ∼550 and ∼560 nm,
respectively (Figure S6).

■ CONCLUSION
We demonstrated a facile and fast technique for the synthesis
of NPs and NCs using TG. The approach we devised is easy to
perform and does not require any conventional reducing agent.
Further, the TG used to carry out the synthesis requires a
fewer number of components which makes it affordable and
easy to build. With this technique, differently sized nanoma-
terials can be synthesized at room temperature. Several factors
could affect the size of the synthesized particles. These include
varying the voltage and current. One way to increase both the
current and voltage is by using materials with high surface
areas like electrospun fibers, which could significantly enhance
the triboelectric charging. Other parameters of equal
importance include the effect of the synthesis medium (its
dielectric constant and dipole moment) and frequency of
rubbing. Further, increasing the frequency of rubbing and/or
enhancing surface area with micro- or nanostructuring results
in an enhanced rate of charge transfer, thus increasing the yield
of NPs and NCs. Using nanostructured surfaces for tribo-
electric charging typically increases the voltage by several folds
(Table S1), which may affect particle synthesis, and it needs to
be taken into account. Extending the method for the
preparation of nanoparticles of other metals and alloys may
be possible. The methodology developed is sustainable and
simple.
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