Supporting Information

A Cellulosic Ternary Nanocomposite for Affordable and Sustainable Fluoride Removal

Moses Egor,§‡†# Avula Anil Kumar,‡†# Tripti Ahuja,† Sritama Mukherjee,‡ Amrita Chakraborty,‡ Chennu Sudhakar,† Pillalamarri Srikrishnarka,‡ Sandeep Bose,† Swathy Jakka Ravindran,† Thalappil Pradeep*,†

§ Busitema University, P.O. Box 236, Tororo, Uganda
‡ Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
† DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

* These authors contributed equally to this work

* Corresponding author
E-mail: pradeep@iitm.ac.in
Tel.: +91-44 2257 4208; Fax: +91-44 2257 0545/0509

Supporting Information Content

Total number of pages: 14
Total number of figures: 8
Total number of equations: 16
Total number of tables: 1
Table of contents

<table>
<thead>
<tr>
<th>Supporting material</th>
<th>Title</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1</td>
<td>Effect of addition of other polyvalent cations, other polyatomic</td>
<td>S4</td>
</tr>
<tr>
<td></td>
<td>anions on fluoride removal capacity of CAlFeC, tested in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distilled and tap water, with various particle sizes, and its</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stability in wet condition.</td>
<td></td>
</tr>
<tr>
<td>Figure S2</td>
<td>Shear stress test results of dry and wet CAlFeC and their</td>
<td>S5</td>
</tr>
<tr>
<td></td>
<td>corresponding Mohr-Coulomb failure patterns</td>
<td></td>
</tr>
<tr>
<td>Figure S3</td>
<td>SEM-EDS element maps and spectra of CAlFeC and CAlFeC-F</td>
<td>S6</td>
</tr>
<tr>
<td>Figure S4</td>
<td>HRTEM-EDS element maps and spectra of CAlFeC and CAlFeC-F</td>
<td>S7</td>
</tr>
<tr>
<td>Figure S5</td>
<td>Cartridge study and TOC measurements</td>
<td>S8</td>
</tr>
<tr>
<td>Figure S6</td>
<td>Fluoride adsorption characteristics of CAlFeC showing the</td>
<td>S9</td>
</tr>
<tr>
<td></td>
<td>effect of adsorbent dose (A), pH of the medium (B), counter-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ions (C), and the effect of regeneration (D).</td>
<td></td>
</tr>
<tr>
<td>Figure S7</td>
<td>Adsorption isotherms of CAlFeC for fluoride showing</td>
<td>S10</td>
</tr>
<tr>
<td></td>
<td>Langmuir (A), Freundlich (B), Temkin (C) and Dubinin-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radushkevich (D) isotherm fittings.</td>
<td></td>
</tr>
<tr>
<td>Figure S8</td>
<td>Adsorption kinetics data showing the effect of contact time and</td>
<td>S11</td>
</tr>
<tr>
<td></td>
<td>adsorption kinetics models: pseudo-second order, pseudo-first</td>
<td></td>
</tr>
<tr>
<td></td>
<td>order and intraparticle diffusion.</td>
<td></td>
</tr>
<tr>
<td>Equation S1</td>
<td>The maximum uptake of F(^-) ((q_e))</td>
<td>S12</td>
</tr>
<tr>
<td>Equation S2</td>
<td>Percentage of fluoride removal</td>
<td>S12</td>
</tr>
<tr>
<td>Equation</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>S3</td>
<td>The linear form of Freundlich adsorption isotherm</td>
<td>S12</td>
</tr>
<tr>
<td>S4</td>
<td>The linear form of Langmuir adsorption isotherm</td>
<td>S12</td>
</tr>
<tr>
<td>S5</td>
<td>Separation factor R_L</td>
<td>S12</td>
</tr>
<tr>
<td>S6</td>
<td>The Temkin isotherm model</td>
<td>S13</td>
</tr>
<tr>
<td>S7</td>
<td>Dubinin-Radushkevich isotherm model</td>
<td>S13</td>
</tr>
<tr>
<td>S8</td>
<td>The parameter ε</td>
<td>S13</td>
</tr>
<tr>
<td>S9</td>
<td>Lagergren pseudo-1st order model</td>
<td>S13</td>
</tr>
<tr>
<td>S10</td>
<td>Ho & Mckay pseudo-2nd order model</td>
<td>S13</td>
</tr>
<tr>
<td>S11</td>
<td>Weber-Morris intraparticle diffusion kinetic model</td>
<td>S13</td>
</tr>
<tr>
<td>S12</td>
<td>Mass intensity</td>
<td>S13</td>
</tr>
<tr>
<td>S13</td>
<td>Water intensity</td>
<td>S13</td>
</tr>
<tr>
<td>S14</td>
<td>Reaction mass efficiency</td>
<td>S14</td>
</tr>
<tr>
<td>S15</td>
<td>Energy intensity</td>
<td>S14</td>
</tr>
<tr>
<td>S16</td>
<td>E factor</td>
<td>S14</td>
</tr>
<tr>
<td>S1</td>
<td>Characteristics of TW before and after spiking with F$^-$, and after contact with CAIFeC</td>
<td>S14</td>
</tr>
</tbody>
</table>
FIGURES:

Figure S1. Effect of addition of other polyvalent cations (A) and other polyatomic anions (B) on the fluoride removal capacity of CAlFeC, tested with fluoride solution in distilled water (DW) and tap water (TW) and with particle sizes of 300 μm, 212 μm and powder, respectively. (C) Physical appearance of dried CAlFeC. (D and E) Show the stable and unstable composite, respectively, when shaken with water.
Figure S2. Direct shear stress test results of dry CAIFeC (A) and wet CAIFeC (B) and their corresponding Mohr-Coulomb failure patterns.
Figure S3. SEM-EDS elemental maps and spectra of CAIFeC (A) and CAIFeC-F (B).
Figure S4. HRTEM-EDS element maps and spectra of CAIFeC (A) and CAIFeC-F (B).
Figure S5. Cartridge experiment setup (A), changes in pH and fluoride levels during cartridge run (B) and the results of TOC leaching measurements (C).
Figure S6. Fluoride adsorption characteristics of CAIFeC showing the effect of adsorbent dose (A), pH of the medium (B), counter-ions (C), and the effect of regeneration (D).
Figure S7. Adsorption isotherms of CAIFeC for fluoride showing Langmuir (A), Freundlich (B), Temkin (C) and Dubinin-Radushkevich (D) isotherm fittings.
Figure S8. Adsorption kinetics data showing the effect of contact time (A) and adsorption kinetics models: pseudo-second order (B), pseudo-first order (C) and intraparticle diffusion (D).
EQUATIONS:

Equation S1. The maximum uptake of F⁻ (qₑ) was calculated using the equation given by:

\[qₑ = \frac{(C₀ - Cₑ)V}{w} \]

where \(qₑ \) is the amount of F⁻ ions adsorbed per gram of the adsorbent (mg/g) at equilibrium, \(Cₑ \) is the equilibrium concentration of fluoride in the bulk solution (mg/L), \(C₀ \) is the initial fluoride concentration (mg/L), \(V \) is the volume of solution (L) and \(w \) is the mass of the adsorbent (g).

Equation S2. Percentage of fluoride removal:

\[\% \text{Removal} = \left(\frac{C₀ - Cₑ}{C₀} \right) \times 100\% \]

Equation S3. The linear form of Freundlich adsorption isotherm is given as

\[\ln qₑ = \ln k + \frac{1}{n} \ln Cₑ \]

where \(k \) is the adsorption capacity and \(n \) is the adsorption intensity.

Equation S4. The linear form of Langmuir adsorption isotherm is given by equation

\[\frac{Cₑ}{qₑ} = \frac{1}{b q_{max}} + \frac{Cₑ}{q_{max}} \]

where \(q_{max} \) is the maximum surface density at monolayer coverage and \(b \) is the Langmuir adsorption constant (L/mg) related to the free energy of adsorption and \(1/q_{max} \) and \(1/bq_{max} \) are the Langmuir constants.

Equation S5. Separation factor \(R_L \), which is calculated from the following equation:

\[R_L = \frac{1}{1 + bC₀} \]
Equation S6. The Temkin isotherm model is represented in the form:

\[
q_e = \frac{RT}{k} \ln A + \left(\frac{RT}{b}\right) \ln C_e
\]

where \(k\), \(A\) and \(b\) are Temkin constants.

Equation S7. Dubinin-Radushkevich isotherm model is given by the equation:

\[
\ln q_e = \ln q_o - k_\varepsilon^2
\]

Equation S8. The parameter \(\varepsilon\) in Equation S7 is obtained from the formula:

\[
\varepsilon = RT \ln \left(1 + \frac{1}{C_e}\right)
\]

where \(R\) and \(T\) are the gas constant and absolute temperature, respectively.

Equation S9. Lagergren pseudo-first order model is given by the equation below:

\[
\ln (q_e - q_t) = \ln q_e - k_1 t
\]

where \(k_1\) is the rate constant and \(q_t\) is the adsorption capacity at any given time, \(t\).

Equation S10. Ho & Mckay pseudo-second order model is given by the equation below:

\[
\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}
\]

where \(k_2\) is the pseudo-second order rate constant.

Equation S11. Weber-Morris intraparticle diffusion kinetic model

\[
q_t = k_i \sqrt{t}
\]

where \(k_i\) is the rate constant.

Equation S12. Mass intensity = \(\frac{\text{Mass of all materials used excluding water}}{\text{Mass of product}}\) kg/kg product

Equation S13. Water intensity = \(\frac{\text{Mass of all water used}}{\text{Mass of product}}\) kg/kg product
Equation S14. Reaction mass efficiency = \(\frac{\text{Mass of product}}{\text{Mass of all reactants}} \times 100\% \)

Equation S15. Energy intensity = \(\frac{\text{Amount of non renewable energy uses}}{\text{Mass of product}} \) kW.h/kg

Equation S16. E factor = \(\frac{[\text{kg (raw materials)} - \text{kg (desired product)}]}{\text{kg (total product including water)}} \)

TABLES:

Table S1. Characteristics of TW before and after spiking with F⁻, and after contact with CAIFeC.

<table>
<thead>
<tr>
<th>Property of TW</th>
<th>Before spiking with F⁻</th>
<th>After spiking with F⁻</th>
<th>After contact with CAIFeC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical conductivity (µS/cm)</td>
<td>760.3</td>
<td>810</td>
<td>620.5</td>
</tr>
<tr>
<td>pH</td>
<td>7.2</td>
<td>8.1</td>
<td>6.7</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>0.03</td>
<td>10.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>