2

3

4

5

6

7

Supporting Information

- Ion-Exchanging Graphenic Nanochannels for Macroscopic Osmotic Energy Harvesting Ankit Nagar^{†,‡}, Md Rabiul Islam[†], Kartheek Joshua[†], Tanvi Gupte[†], Sourav Kanti Jana[†], Sujan Manna[†], Tiju Thomas^{*,‡} and Thalappil Pradeep^{*,§,†} [†]DST Unit of Nanoscience, Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
- 8 [‡]Department of Metallurgical and Materials Engineering, Indian Institute of Technology
- 9 Madras, Chennai 600036, India.
- ^{\$}International Centre for Clean Water, 2nd Floor, B-Block, IIT Madras Research Park,
- 11 Kanagam Road, Taramani, Chennai 600113, India

Note	Figure/Table	Details	Page No.
	Figure S1	Photograph of a contorted membrane	S2
1	Figure S2	Microscopy images of the rGO-TiO ₂ membrane	S2
1	Figure S3	HRTEM micrographs of rGO and rGO-TiO ₂	S3
	Figure S4	Powder XRD of all prepared materials	S4
	Table S1	Specific surface areas of the materials	S5
	Figure S5	Pore size distribution curves	S5
2	Figure S6	Pore characterization of rGO-TiO ₂ (TiO ₂ 99% w/w)	S5
	Figure S7	Zeta potential vs pH	S6
	Figure S8	Photographs of the dispersions	S6
3	Figure S9	Molecule-exclusion test	S8
4	Figure S10	SEM-EDX of REF, AER and CER	S9
	Figure S11	Circuit diagram to measure osmotic power	S10
5	Table S2	Osmotic current and potential for CEM	S10
	Table S3	Osmotic current and potential for AEM	S10

	Figure S12	Power output for different electrolytes for CEM	S11
	Figure S13	Power output of CEM for 15 days	S11
6	Table S4	Literature survey of existing RED devices	S11
	Figure S14	Simulated system for ion transport	S16
7	Figure S15	Simulation conformations at different concentrations	S17
	Table S5	Interaction distances at different concentrations	S18

13 Note 1. Characterization of the resins and corresponding membranes

14

15

- 16 Figure S1. The optical image showing flexibility of a vacuum-filtered membrane contorted
- 17 manually without any observable damage.

Figure S2. a,b) Top-view FESEM images of the reference rGO-TiO₂ membrane. c) Surface morphology of a particle. It shows presence of arrays of wiggly rGO nanosheets covered and intercalated uniformly with TiO₂ nanoparticles. d) Optical image of the cross-section of the membrane depicting film thickness. The white region below the film is the filter paper. Due to vacuum filtration, particles have penetrated the depth of the filter paper. Therefore, measured film thicknesses are tentative. The mean membrane thickness is $140.0 \pm 4.5 \,\mu\text{m}$.

Figure S3. HRTEM micrographs of a) rGO, and b) rGO-TiO₂. The folding and overlapping

27 of rGO sheets are apparent from a-i and b-i.

Figure S4. Powder XRD patterns for rGO, TiO₂, rGO-TiO₂ alongside a) rGO-TiO₂-PS-SO₃H
(CER) and b) rGO-TiO₂-PS-N⁺(CH₃)₃Cl⁻ (AER). Pure rGO shows a broad peak at 24.8°.
Characteristic peaks of TiO₂ shown in a) and b) confirm the presence of anatase phase. The
rGO-TiO₂-PS, CER and AER composites show signature peaks of anatase TiO₂, as well as
peak broadening around 24.8° corresponding to rGO.

34 Note 2. Role of TiO₂ in the nanocomposite

We performed surface area measurements using the Brunauer-Emmett-Teller (BET) method 35 on three rGO-TiO₂ composites with varying TiO₂ loading in the range of 0-99 % w/w. It was 36 observed that an increase in the TiO₂ loading leads to an increase in the specific surface area 37 (Table S1). For a 50 % (w/w) TiOSO₄ precursor, the resulting composite, referred to as rGO-38 TiO_{2 (50% w/w)}, has nearly double the surface area, compared to rGO. And for a 99% TiOSO4 39 precursor, the obtained composite has three-fold higher surface area compared to rGO. Larger 40 surface area indicates presence of abundant nanochannels. Therefore, TiO₂ loading was kept at 41 42 99% (w/w) in the rGO-TiO₂ nanocomposite. All composites were found to be mesoporous in nature with pore size in the range 2-10 nm (Figure S4, S5). The pore distribution curves 43 44 obtained from the desorption profile reveal highest mesoporous character in the rGO-TiO₂

- 45 (TiO₂ 99% w/w), compared to the other two materials, with majority of the pores having a size
- 46 of 9.9 nm.

Material	BET surface area (m²/g)
rGO	6.546
rGO-TiO ₂ (50% w/w)	12.618
rGO-TiO ₂ (99% w/w)	21.262

47 **Table S1.** Specific surface areas of rGO and rGO-TiO₂ composites from BET measurements.

48

49

50 Figure S5. Pore size distributions of a) rGO, and b) rGO-TiO₂ (TiO₂ 50% w/w).

It is well-known that for a suspension to be stable, it should have a zeta potential value of either
+30 mV or higher, or -30 mV or lower. From Figure R5, it is apparent that rGO-TiO₂ has a
more negative surface charge relative to rGO across the entire pH range. Also, rGO-TiO₂

suspension is stable over a wider range of pH, i.e, 8.0-11.0, in comparison to the rGO
suspension, which was stable in the range of 9.4-11.0 (Figure S5).

59

- **Figure S7.** Zeta potential as a functional of pH in the range 3-11 for rGO and rGO-TiO₂
- 61 suspensions in deionized water.

62

Figure S8. Optical images of rGO and rGO-TiO₂ suspensions in deionized water in the pH

64 range 3-11.

65

67 Note 3. Molecule-exclusion test for membrane defect characterization

In order to confirm the defect-free nature of the membrane, we chose to check the permeation 68 of a neutral molecule, ovalbumin, across the membrane. Ovalbumin was procured from Merck 69 & Co. (A5503-10 G). The chosen protein molecule is neutral at its isoelectric point (~5). 70 Ovalbumin molecule is slightly ellipsoid-shaped with dimensions of 7 nm \times 4.5 nm \times 5 nm, 71 resulting in an effective spherical diameter of 5 nm.^[1] Also, at the isoelectric point, there is 72 negligible electrostatic interaction between the graphene sheets and ovalbumin. Possibility of 73 hydrogen bond formation is also minimal at this point.^[2] Therefore, the molecule will not 74 undergo adsorption prominently on the graphene sheets during the experiment. 75

The rGO-TiO₂ particles were assembled by vacuum filtration through a Whatman paper to 76 77 form a membrane. The resulting membrane was put at the junction of the two-compartment 78 setup (Figure 1a in the manuscript). One of the compartments (feed side) was filled with a 5 mg/ml concentration of Ovalbumin. The other compartment (permeate side) was filled with 79 80 deionized water. The system as left for 24 h in order to allow concentration gradient-induced diffusion of the probe molecule through the membrane. Samples from feed and permeate sides 81 82 were collected at t=0 (initial) and t=24 h (final). The samples were analysed for the presence of ovalbumin using ion mobility mass spectrometry. In order to ionize the protein molecule for 83 mass spectrometry, 2 ml of the protein solution was mixed with a 50 µl solution of formic acid 84 85 solution. The formic acid solution was made by mixing 80 µl formic acid in 1 ml of milli-Q water. To obtain a well-resolved mass spectrum, following instrumental parameters were 86 applied: capillary voltage, 2.75 kV; cone voltage, 50 V; source offset, 50 V; source 87 temperature, 100 °C; dissolution temperature, 150 °C; desolvation gas flow, 400 L/h. Mass of 88 the as-available protein was measured to be 44.2 kDa. The obtained mass spectra for initial 89 90 feed solutions, and initial and final permeate solutions are shown in the combined plot in Figure S6. While ovalbumin was found in 16 and 17 charge states in the negative-ion mode for the 91

92 feed solution, there was no signature of the molecule in the permeate solutions, thereby
93 confirming that the protein molecule did not permeate across the membrane. This shows that
94 the membrane does not contain any macroscopic defects.

95

Figure S9. Mass spectra of the initial feed solution, plotted along with the initial and finalpermeate solutions.

98 Note 4. Ion selectivity of the resins

The covalently linked sulfonate and quaternary amine groups impart ion selectivity to the 99 cation- and anion- exchange resins, respectively. The resins and rGO-TiO₂ were soaked in 0.01 100 M NaCl solution for 24 h and Energy-dispersive X-Ray spectroscopy (EDX) was performed 101 thereafter. There was insignificant amount of Na⁺ and Cl⁻ in the rGO-TiO₂ membrane since 102 their peak intensities are negligible. However, based on the intensities of the signature peaks 103 104 of sodium (1.04 keV) and chloride ions (2.62 keV) in cases of CER and AER, it is evident that amount of sodium ions is much higher in the CER, and that of Cl⁻ is much higher in AER, with 105 respect to their respective counter ions. This verifies the cation- and anion- selectivity of CER 106 and AER. 107

Figure S10. SEM image, elemental mapping and EDX spectrum of a) rGO-TiO₂, b) cationexchange resin, and c) anion-exchange resin after soaking in 0.01 M NaCl solution.

111 Note 5. Osmotic potential and current

The salinity gradient energy conversion is studied by performing I-V characterisation. The sweep voltage was varied from -0.4 V to 0.4 V at a rate of 50 mV s⁻¹. The experimental setup can be visualised in terms of an equivalent circuit showed in Figure S6. V_{oc}, V_{redox} and V_{os} represent the measured open circuit potential, redox potential from the unequal potential drop at the electrode-solution interface, and the diffusion (or osmotic) potential due to ion selectivity of the test membrane, respectively.

Figure S11. Equivalent circuit diagram of the membrane-based power source. The measured

120 V_{oc} has two components, E_{redox} and V_{diff} .

	5	50	100	300	500
V _{oc} (mV)	47.35	66.28	73.21	75.35	120.45
V _{redox} (mV)	12.17	19.84	23.89	15.90	7.90
V _{os} (mV)	35.18	46.44	49.32	59.45	112.55
t +	0.96	0.76	0.73	0.73	0.90
η (%)	42.3	13.5	10.6	10.6	32

121 **Table S2.** List of V_{oc}, V_{redox} and V_{os} with respect to salinity gradient for the CEM.

Table S3. List of V_{oc}, V_{redox} and V_{os} with respect to salinity gradient for the AEM.

Concentration gradient (M/M)	5	50	100	300	500
V _{oc} (mV)	49.22	69.75	70.08	79.88	114.54
V _{redox} (mV)	12.17	19.84	23.89	15.90	7.90
V _{os} (mV)	37.05	49.91	46.19	63.98	106.64
t +	0.98	0.77	0.72	0.75	0.88
η (%)	46.1	14.6	9.7	12.5	28.9

Figure S12. Osmotic energy performance of the CEM under a 100-fold salinity gradient (0.01

126 M/ 1 M). a) Power density, b) Current density, and c) Max. power density.

Figure S13. Power output of the CEM for a period of 15 days. The salinity gradient was 500fold (0.01 M/ 5 M NaCl). The electrolyte solutions in both the compartments were replenished
after every measurement.

- 131 Note 6. Literature survey of existing RED devices
- Table S4. A literature survey of single-pore, macroscopic, and nano-/ micro- scopic RED
 devices.
- 134

Material system	Electrolyte, concentration	Membrane area (nm ²)	Power (pW)	Power density (mW/m ⁻²)	Maximum efficiency	Scalability
	(high/low)				(70)	
		Single po	re system			
Silica nanochannel ^[3]	KCl, 1000 mM/1 mM	1.40×10^{4}	9.87	9.87 × 10 ⁻⁵	46.08	Medium
Functionalized single pore polyamide membrane ^[4]	KCl, 1000 mM/1 mM	1.26×10^{3}	45.12	6.39 × 10 ⁻⁵	29.34	Medium
Single MoS ₂ pore ^[5]	KCl, 1000 mM/ 1 mM	78.5	78.5		17.6	Low
Single BNNT pore ^[6]	KCl, 1000 mM/ 1 mM	5.03×10^{3}	20.1		8.36	Low
Single-ion-selective polyimide nanopore ^[7]	KCl, 1000 mM/ 1 mM	3.13×10^{6}	26		4	Medium
Chitosan/ poly(acrylic acid) functionalized conical nanopore ^[8]	NaCl, 1000 mM/ 1 mM	4.56×10^{8}	35.5	9.61 × 10 ⁻⁴	3.48	High
Single conical mesopore ^[9]	KCl, 500 mM/ 1 mM	1.29×10^{5}	87.3		4	Medium
		Nano- / micro	scopic syste	em		
Porous block copolymer - PET asymmetric heterogeneous membrane ^[10]	KCl, 1000 mM/ 1 mM	3.61 × 10 ⁶	1.26	6.87 × 10 ⁻²	30.57	Low
Single layer nanoporous membrane comprising core-rim polycyclic aromatic hydrocarbons ^[11]	KCl, 1000 mM/ 1 mM	1.20 × 10 ³	450	5.73 × 10 ⁵	6.85	Medium
Nanoporous graphene on PET ^[12]	NaCl, 1000 mM/ 1 mM	2.27×10^{2}	6.13 × 10 ⁻³	4.09	39	Low
Vertically oriented GO membrane ^[13]	KCl, 1000 mM/ 1 mM	3.54×10^{9}	$\begin{array}{ccc} 1.19 & \times \\ 10^5 & \end{array}$	3.36×10^{4}	34.16	High
Packed silica nanoparticles ^[14]	KCl, 100 mM/ 0.1 mM	1.60×10^{9}	1.17×10^3	7.3×10^{-2}	42.32	Medium
Hydrogel functionalized nanoporous PET membrane ^[15]	NaCl, 1000 mM/ 1 mM	1.94×10^{5}	21.88	7.82×10^{-4}	3.92	High

Freestanding silica	KCl, 1000	2.83×10^{7}	434	1.8×10^{-3}	15.68	Medium
nanochannel	mM/ 1 mM					
	VC1 1000	4.00×10^{5}	2.09		21	Madium
10 silica	M(1, 1000)	4.00×10^{10}	5.08		51	Medium
DN penochoote/	$\frac{1111VI}{1200}$	2.00×10^{10}	7.00 ×	2.22×10^4	7.22	High
DIN Hanosheets/	M/1 mM	5.00×10^{-5}	1.00×10^{5}	2.55×10	1.22	nign
nanocomposito	111111/1/ 1 1111111		10			
membrane ^[18]						
MYana/ Kaylar	KC1 = 100 mM/	3.00×10^{10}	134 ×	1.46×10^{3}	8.82	High
nanofiber composite	0.1 mM	3.00×10	1.34 ^	4.40×10	0.02	Ingn
membrane ^[19]	0.1 11111		10			
Polymer/MOF	NaCl_500 mM/	3.00×10^{10}	862 ×	2.87×10^{3}	23.16	High
hybrid nanochannel	10 mM	5.00 × 10	10^4 ×	2.07 × 10	23.10	Ingn
membrane ^[20]			10			
Polyelectrolyte	NaC1_500 mM/	3.00×10^{10}	117 ×	3.90×10^{3}	19.2	High
hydrogel/ porous	10 mM	5.00 × 10	10^{5}	5.90 × 10	17.2	mgii
aramid nanofiber	10 111/1		10			
composite						
membrane ^[21]						
2-hydroxyethyl	KCl, 500 mM/	3.00×10^{10}	5.8×10^5	1.96×10^{4}	5.85	High
methacrylate	1 mM					C
phosphate (HEMAP)						
hydrogel						
membrane ^[22]						
Graphene oxide	KCl, 500 mM/	$3.00 imes 10^{10}$	1.76 ×	$5.85 imes 10^3$	32	High
nanosheets/ cellulose	10 mM		10^{5}			
nanofibers composite						
membrane ^[23]						
Graphene oxide	KCl, 5000	3.00×10^{10}	4.86 ×	1.62×10^{4}	16.4	High
nanosheets/ silk	mM/ 10 mM		10 ⁵			
nanofibers composite						
membrane ^[24]		0.00 1010	1.0.4	0.14	12 (· · · · ·
Ionic diode	NaCl, 1 mM/	3.00×10^{10}	1.04×10^{4}	3.46	12.6	High
membrane ^[25]	0.001 mM	1.00 1010	10*	2.04	0.0	TT' 1
Block co-polymer-	KCl, 10 mM/	1.00×10^{10}	2.04×10^{1}	2.04	8.9	Hıgh
poly(styrenesulfonat	0.01 mM		10'			
(e) Janus Mombrono ^[26]						
Myono ^[1]	KC1 1000	1.63×10^{10}	3.4×10^5	2.00×10^4	40.6	High
WIXENE	mM/1 mM	1.03×10	3.4×10	2.09×10	40.0	nıgli
Nanoporous	$\frac{1000}{KCl} = 1000$	8.32×10^{10}	183 ×	6.15×10^{-2}	5 31	High
nolycarbonate	mM/1 mM	0.32×10	10^3	0.13×10	5.51	Ingn
track-etch			10			
membranes ^[27]						
PDMS microfluidic	KCl. 100 mM/	2.00×10^{10}	3.27 ×	16.4	10.4	Medium
channels covered in	0.1 mM		10 ²			
carboxylate			-			
polystyrene						
nanoparticles ^[28]						

Polyether sulfone/sulfonated	NaCl, 500 mM/1 mM	3.00×10^{10}	7.44×10^4	2.48×10^{3}	6.48	High
polvether sulfone ^[29]			10			
Cation selective	KCl, 2000	$1.15 imes 10^{10}$	8.68 ×	8.68×10^{-2}	36	Medium
Nafion	mM/1 mM		10 ³			
microchannels ^[30]		1.0		-		
2,2,6,6- tetramethylpiperidin e-1-oxyl (TEMPO)-	NaCl, 500 mM/ 1 mM	2.00×10^{10}	1.46×10^4	7.30×10^{2}	25	High
oxidized bacterial cellulose (TOBC) nanofibers/						
fibers ^[31]						
Silk nanofibril-AAO hybrid membrane ^[32]	KCl, 1 mM/ 0.001 mM	3.00×10^{10}	$\begin{array}{ccc} 8.58 & \times \\ 10^4 & \end{array}$	2.86×10^{3}	11.8	High
Cellulose nanofibers ^[33]	NaCl, 5000 mM/10 mM	3.00×10^{10}	3.61×10^{5}	12.04×10^3	-	High
Poly(ionic liquid) ^[34]	NaCl, 5000 mM, 10 mM	3.00×10^{10}	$6.00 imes 10^4$	15.46×10^{3}	-	Medium
GO-intercalated	NaCl, 500 mM/	3.00×10^{10}	$1.50 \times$	0.5×10^{3}	14.0	Medium
Black Phosphorous ^[35]	10 mM		104			
MoS ₂ -Cellulose nanofibers ^[36]	NaCl, 5000 mM/ 10 mM	3.00×10^{10}	4.68×10^5	15.6×10^{3}	32.0	Medium
Covalent Organic Framework- Aramid	NaCl, 500 mM/ 10 mM	3.00×10^{10}	$\begin{array}{c} 2.04 \times \\ 10^5 \end{array}$	6.8×10^{3}	20.5	High
Nanofibers ^[37]						
		Macroscoj	pic system			
Anion-selective polyelectrolytic AAO nanoporous membrane ^[38]	NaCl, 510 mM/ 17 mM	1.57×10^{14}	1.36×10^{6}	4.35	30.89	High
BN nanopore ^[39]	KCl, 1000 mM, 1 mM	1.75×10^{11}	9.75×10^{6}	165.85	11.38	High
Electric-eel-inspired hydrogel ^[40]	NaCl, 2500 mM/ 15 mM	8.66 × 10 ¹³	2.3×10^{6}	27	44.14	High
Functionalized Montmorillonite lamellae ^[41]	KCl, 100 mM/ 0.1 mM	7.85×10^{11}	1.18×10^{5}	150	32.20	High
Ion selective Nafion (NR211) membrane ^[42]	KCl, 30mM/ 0.1 mM	2.00×10^{13}	1.50×10^4	0.75	7.2	High

Live eels ^[40]	NaCl, 500 mM/ 15 mM	2.80×10^{15}	$\begin{array}{ccc} 2.3 & \times \\ 10^{10} & \end{array}$	1.36×10^{4}	50	High
Platinum coated nanoporous anodic Alumina membrane ^[43]	KCl, 1000 mM/1 mM	7.85 × 10 ¹³	2.62×10^3	3.34 × 10 ⁻²	0.98	High
Self-Assembled kaolin-based Janus 2D nanochannels ^[44]	KCl, 500 mM/ 1mM	2.00×10^{11}	1.8×10^{5}	0.90×10^{2}	44.2	High
Silica-coated alumina nanoporous membrane ^[45]	NaCl, 100 mM/ 10 mM	3.05×10^{13}	5.39×10^5	0.31	15.68	Medium
MXene ^[46]	NaCl, 5 mM/0.01 mM	7.80 × 10 ¹¹		1.1 × 10 ³	27.1	High
MXene/GO composite membrane ^[47]	NaCl, 500 mM/ 10 mM	7.10 × 10 ¹⁴	26.27×10^{8}	3.7×10^{3}	-	High
UiO-66-NH ₂ MOF @ANM ^[48]	KBr, 1000 mM/ 10 mM	7.85 × 10 ¹¹	$\frac{2.08\times}{10^7}$	26.5×10^3	43.7	Medium
Lignin microrods- based nanofluidic membrane ^[49]	NaCl, 5000 mM/10 mM	5.00 × 10 ¹¹	5.95×10^{6}	1.19×10^{3}	-	
MXene/ Bacterial nanocellulose ^[50]	NaCl, 10000 mM/ 10 mM	1.00×10^{12}	0.91 × 10 ⁶	0.91 × 10 ³	2.0	High
Covalent Organic Framework- Aramid Nanofibers ^[37]	Artificial <i>Salt-Dome</i> solution/ river water, 500-fold	2.07×10^{13}	1.30 × 10 ⁹	62.9×10^{3}	-	High
Our work (CEM)	NaCl, 5000 mM/10 mM	2.24 × 10 ¹¹	1.00 × 10 ⁵	448.67	32.0	High
Our work (AEM)	NaCl, 5000 mM/10 mM	2.24×10^{11}	3.98 × 10 ⁴	177.84	28.9	High

Figure S14. Simulated system for understanding ion transport. a) Reduced graphene oxide
sheet functionalized with -SO₃H. b) Ball-and-stick representation of a single functionalized
graphene sheet (S: yellow, O: red). c) The simulation box. Channel length is 5 nm.

Figure S15. Simulation boxes showing water, Na⁺, and Cl⁻ ions permeating across graphenic
nanochannels. Images on the left and right show initial and final conformations at a) 0.5 M, b)
1.0 M, and c) 1.5 M electrolyte concentration.

149

Table S5. The values of initial interaction distances of Na-O, Na-S, Cl-O, and Cl-S at three
different concentrations

Distance (Å)	0.5 M	1.0 M	1.5 M
Na ⁺ -O	3.0	2.5	2.5
Na ⁺ -S	4.0	5.2	2.5
ClO	3.0	3.0	3.5
Cl ⁻ -S	No interaction	8.0	7.0

153

154 **References**

- [1] S. Hong, F. Ming, Y. Shi, R. Li, I. S. Kim, C. Y. Tang, H. N. Alshareef, P. Wang, ACS
 Nano 2019, 13, 8917.
- 157 [2] L. Chen, D. Zheng, Y. Zhang, Y. Wang, Z. Xu, J. Sep. Sci. 2017, 40, 1765.
- 158 [3] Y. Zhang, Z. Huang, Y. He, X. Miao, *Nanotechnology* **2019**, *30*, 295402.
- [4] L. Cao, W. Guo, W. Ma, L. Wang, F. Xia, S. Wang, Y. Wang, L. Jiang, D. Zhu,
 Energy Environ. Sci. 2011, *4*, 2259.
- 161 [5] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana,
 162 N. R. Aluru, A. Kis, A. Radenovic, *Nature* 2016, *536*, 197.
- 163 [6] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, L. Bocquet,
 164 *Nature* 2013, 494, 455.
- [7] W. Guo, L. Cao, J. Xia, F. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang,
 Adv. Funct. Mater. 2010, 20, 1339.
- 167 [8] S. Balme, T. Ma, E. Balanzat, J.-M. Janot, J. Memb. Sci. 2017, 544, 18.
- 168 [9] M. Gao, P. Tsai, Y. Su, P. Peng, L. Yeh, *Small* **2020**, *16*, 2006013.
- [10] Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, *J. Am. Chem. Soc.* 2015, *137*, 14765.
- [11] X. Liu, M. He, D. Calvani, H. Qi, K. B. Gupta, H. J. M. de Groot, G. J. Sevink, F.
 Buda, U. Kaiser, G. F. Schneider, *Nat. Nanotechnol.* 2020, *15*, 307.
- 173 [12] Y. Fu, X. Guo, Y. Wang, X. Wang, J. Xue, *Nano Energy* **2019**, *57*, 783.
- [13] Z. Zhang, W. Shen, L. Lin, M. Wang, N. Li, Z. Zheng, F. Liu, L. Cao, *Adv. Sci.* 2020,
 7, 2000286.
- 176 [14] W. Ouyang, W. Wang, H. Zhang, W. Wu, Z. Li, *Nanotechnology* **2013**, *24*, 345401.

- 177 [15] T. Ma, E. Balanzat, J.-M. Janot, S. Balme, *ACS Appl. Mater. Interfaces* 2019, *11*, 12578.
- 179 [16] F. Yan, L. Yao, K. Chen, Q. Yang, B. Su, J. Mater. Chem. A 2019, 7, 2385.
- [17] D.-K. Kim, C. Duan, Y.-F. Chen, A. Majumdar, *Microfluid. Nanofluidics* 2010, 9, 1215.
- [18] C. Chen, D. Liu, L. He, S. Qin, J. Wang, J. M. Razal, N. A. Kotov, W. Lei, *Joule* 2020, 4, 247.
- 184 [19] Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, X. Feng, *Nat. Commun.* 2019, 10, 1.
- 185 [20] R. Li, J. Jiang, Q. Liu, Z. Xie, J. Zhai, *Nano Energy* **2018**, *53*, 643.
- 186 [21] Z. Zhang, L. He, C. Zhu, Y. Qian, L. Wen, L. Jiang, *Nat. Commun.* 2020, 11, 1.
- [22] W. Chen, Q. Wang, J. Chen, Q. Zhang, X. Zhao, Y. Qian, C. Zhu, L. Yang, Y. Zhao,
 X.-Y. Kong, B. Lu, L. Jiang, L. Wen, *Nano Lett.* **2020**, *20*, 5705.
- [23] Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian, Y. Sun, X. Zhao, W. Chen, L. Jiang, L.
 Wen, *Mater. Horizons* 2020, *7*, 2702.
- [24] W. Xin, H. Xiao, X.-Y. Kong, J. Chen, L. Yang, B. Niu, Y. Qian, Y. Teng, L. Jiang, L.
 Wen, ACS Nano 2020, 14, 9701.
- 193 [25] J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, J. Am. Chem. Soc. 2014, 136,
 194 12265.
- [26] Z. Zhang, X. Sui, P. Li, G. Xie, X.-Y. Kong, K. Xiao, L. Gao, L. Wen, L. Jiang, J. Am.
 Chem. Soc. 2017, 139, 8905.
- 197 [27] K. Kwon, S. J. Lee, L. Li, C. Han, D. Kim, Int. J. Energy Res. 2014, 38, 530.
- 198 [28] E. Choi, K. Kwon, D. Kim, J. Park, *Lab Chip* **2015**, *15*, 168.
- [29] X. Huang, Z. Zhang, X.-Y. Kong, Y. Sun, C. Zhu, P. Liu, J. Pang, L. Jiang, L. Wen,
 Nano Energy 2019, *59*, 354.
- [30] T.-C. Tsai, C.-W. Liu, R.-J. Yang, Power Generation by Reverse Electrodialysis in a
 Microfluidic Device with a Nafion Ion-Selective Membrane, Vol. 7, 2016.
- [31] N. Sheng, S. Chen, M. Zhang, Z. Wu, Q. Liang, P. Ji, H. Wang, *ACS Appl. Mater*.
 Interfaces 2021, *13*, 22416.
- [32] W. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.-Y. Kong, L. Jiang, L. Wen,
 Nat. Commun. 2019, 10, 3876.
- [33] Q. Luo, P. Liu, L. Fu, Y. Hu, L. Yang, W. Wu, X.-Y. Kong, L. Jiang, L. Wen, ACS
 Appl. Mater. Interfaces 2022, 14, 13223.
- 209 [34] Y. Hu, Y. Teng, Y. Sun, P. Liu, L. Fu, L. Yang, X.-Y. Kong, Q. Zhao, L. Jiang, L.
 210 Wen, *Nano Energy* 2022, *97*, 107170.
- [35] Z. Zhang, P. Zhang, S. Yang, T. Zhang, M. Löffler, H. Shi, M. R. Lohe, X. Feng,
 Proc. Natl. Acad. Sci. 2020, *117*, 13959.
- [36] C. Zhu, P. Liu, B. Niu, Y. Liu, W. Xin, W. Chen, X.-Y. Kong, Z. Zhang, L. Jiang, L.
 Wen, J. Am. Chem. Soc. 2021, 143, 1932.

- [37] Z. Man, J. Safaei, Z. Zhang, Y. Wang, D. Zhou, P. Li, X. Zhang, L. Jiang, G. Wang, J.
 Am. Chem. Soc. 2021, 143, 16206.
- [38] S. H. Kwak, S.-R. Kwon, S. Baek, S.-M. Lim, Y.-C. Joo, T. D. Chung, *Sci. Rep.* 2016, 6, 1.
- [39] A. Pendse, S. Cetindag, P. Rehak, S. Behura, H. Gao, N. H. L. Nguyen, T. Wang, V.
 Berry, P. Král, J. Shan, *Adv. Funct. Mater.* 2021, *31*, 2009586.
- [40] T. B. H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept, M. Shtein,
 J. Yang, M. Mayer, *Nature* 2017, 552, 214.
- [41] C. Wu, T. Xiao, J. Tang, Q. Zhang, Z. Liu, J. Liu, H. Wang, *Nano Energy* 2020, 76, 105113.
- 225 [42] H.-K. Chang, E. Choi, J. Park, *Lab Chip* **2016**, *16*, 700.
- 226 [43] Y. Wang, H. Wang, C. Q. Wan, *Energy* **2018**, *160*, 863.
- [44] H. Cheng, Y. Zhou, Y. Feng, W. Geng, Q. Liu, W. Guo, L. Jiang, *Adv. Mater.* 2017, 29, 1700177.
- 229 [45] J. Kim, S. J. Kim, D.-K. Kim, *Energy* **2013**, *51*, 413.
- [46] P. Liu, Y. Sun, C. Zhu, B. Niu, X. Huang, X.-Y. Kong, L. Jiang, L. Wen, *Nano Lett.* 2020, 20, 3593.
- [47] F. Wang, Z. Wang, S. Wang, X. Meng, Y. Jin, N. Yang, J. Sunarso, S. Liu, *J. Memb. Sci.* 2022, 647, 120280.
- 234 [48] Y.-C. Liu, L.-H. Yeh, M.-J. Zheng, K. C.-W. Wu, Sci. Adv. 2021, 7, eabe9924.
- [49] P. Cheng, S. Chen, X. Li, Y. Xu, F. Xu, A. J. Ragauskas, *Energy Convers. Manag.* 2022, 255, 115321.
- [50] Y. Xu, K. Zhang, S. Chen, X. Zhang, Y. Chen, D. Li, F. Xu, *Electrochim. Acta* 2022, 412, 140162.