Supporting Information for

Observing Real-Time Adhesion of Microparticles on Glass Surfaces

Pillalamarri Srikrishnarka^{1,3}, Dhivyaraja Kumaran², Vishal Kumar^{1,3}, Amoghavarsha Ramachandra Kini¹, Ankit Nagar¹, Md Rabiul Islam¹, Ramamurthy Nagarajan^{3,*}, Thalappil Pradeep^{1,*}

¹DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

²Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036,

India

³Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai

600036, India

*E-mail: nag@iitm.ac.in, pradeep@iitm.ac.in

SUPPORTING INFORMATION CONTENT

Number of pages: 13

Number of figures: 12

ANNEXURE 1

MATLAB code used for calculating feret diameter

SUPPORTING INFORMATION VIDEO

SV-1: Video depicting a particle adhesion on glass

SV-2: Video showing a particle traveling from the depth and adhering to the glass TABLE OF CONTENTS

Figure No.	Description	Page No.
Figure S1	FT-IR spectra of bare, amine functionalized and	S3
	hydrophobic silica.	
Table S1	FTIR assignment for bare, amine, and hydrophobic	S4
	silica particles	
Figure S2	Charge distribution of bare, amine, and hydrophobic	S5
	silica particles	
Figure S3	Contact angle measurements performed on (a)	S5
	hydrophilic, (b) hydrophobic, and (c) amine	
	functionalized glass	
Figure S4	(a) XPS survey spectra of hydrophobic glass. Expanded	S6
	region of (b) C, (c) S ₁ , (d) O_2 and (e) F	9.4
Figure S5	(a) XPS survey spectra of TMA-treated glass. Expanded $(A = A + A)$	S 6
F' 07	region of (b) C, (c) Si, (d) O_2 and (e) N	07
Figure S6	Optical image from the high-speed camera, (a) boxed	57
	region depicts the region of interest (ROI), (b) ROI	
	cropped from the image (inset) shows an enlarged	
	bar corresponds to 10 µm, and (c) after color inversion	
Figure \$7	Digital photographs from the high-speed camera	58
I Iguie 57	Interaction of positive control and negatively charged	50
	particles on hydrophobic glass is shown in (a, h and c	
	respectively)	
Figure S8	Digital photographs from the high-speed camera	<u>\$9</u>
I Iguite Do	Interaction of positive, control, and negatively charged	
	particles on amine-functionalized glass is shown in (a, b	
	and c. respectively)	
Figure S9	Heat-map representing the median time needed for	S10
U	particles to adhere on different functionalized surfaces	
Figure S10	Particle size distribution on functionalized glass after	S11
	the adhesion of silica particles	
Figure S11	gure S11 Size-distribution of deposited dust on functionalized	
	glass every day	
Figure S12	Digital photograph having water droplet on various	S13
	surfaces	

Figure S1. FT-IR spectra of bare, amine functionalised, and hydrophobic silica. Various vibrations are assigned.

Wavenumber	Bare SiO ₂	Amine @ SiO ₂	Phobic @ SiO ₂	Assignment
(cm^{-1})				
1000	Yes	Yes	Yes	Si-O-Si ²
840	No	Yes	Yes	Si-O-C
				deformation ³
1100	No	Yes	Yes	Si-O-C
				stretching ³
1138	No	No	Yes	C-F ₃ stretching ⁴
1190	No	No	Yes	C-F ₂ stretching ⁴
1214	No	Yes	No	C-N stretching
1463	No	Yes	Yes	C-H bending
1650	No	Yes	No	N-H bending
3267	No	Yes	Yes	C-H stretching

Table S1. FTIR assignment for bare, amine, and hydrophobic silica particles.

Figure S2. Charge distribution of bare, amine, and hydrophobic silica particles. (Inset) Schematic representation of the moieties, blue ball represents silica particle, red and white represent oxygen and hydrogen, respectively. Grey, green and light blue color represent fluorine, carbon and nitrogen, respectively. The largest ball represents silica particle.

Figure S3. Contact angle measurements performed on (a) hydrophilic, (b) hydrophobic, and (c) amine functionalized glass.

Figure S4. (a) XPS survey spectra of hydrophobic glass. Expanded region of (b) C, (c) Si, (d) O_2 and (e) F.

Figure S5. (a) XPS survey spectra of TMA-treated glass. Expanded regions of (b) C, (c) Si, (d) O and (e) N.

Figure S6. Optical image from the high-speed camera, (a) boxed region depicts the region of interest (ROI), (b) ROI cropped from the image, (inset) shows an enlarged region to show the particles adhered on glass and scale bar corresponds to $10 \,\mu$ m, and (c) after color inversion.

Figure S7. Digital photographs from the high-speed camera. Interaction of positive, control, and negatively charged particles on hydrophobic glass is shown in (a, b and c, respectively). Scale bar corresponds to 100 μ m. For all the magnified images, the scale bar is 10 μ m.

Figure S8. Digital photographs from the high-speed camera. Interaction of positive, control, and negatively charged particles on amine-functionalized glass is shown in (a, b and c, respectively). Scale bar corresponds to 100 μ m. For all the magnified images, the scale bar is 10 μ m.

Figure S9. Heat-map representing the median time needed for particles to adhere on different functionalized surfaces. Scale bar on the right represent the time in seconds.

Figure S10. Particle size distribution on functionalized glass after the adhesion of silica particles.

Figure S11. Size-distribution of deposited dust on functionalized glass every day.

Figure S12. Digital photographs of water droplet on foiled (a) hydrophilic, (b) TMA-treated and (c) hydrophobic glass surfaces. Droplet interaction on slanted (d) hydrophilic, (e) TMA-treated and (f) hydrophobic glass surfaces. All surfaces are with sand.

References

- (1) Savin, T.; Doyle, P. S. Static and Dynamic Errors in Particle Tracking Microrheology. *Biophys. J.***2005**, 88 (1), 623–638. https://doi.org/10.1529/biophysj.104.042457.
- (2) Jiang, L.; Park-Lee, K. J.; Clinton, R. M.; Tang, Z.; Breedveld, V.; Hess, D. W. Mechanical Durability of Liquid Repellent Coatings. *Surf. Coat. Technol.*2017, 328, 182– 191. https://doi.org/10.1016/j.surfcoat.2017.08.007.
- (3) Jeong, H.-J.; Kim, D.-K.; Lee, S.-B.; Kwon, S.-H.; Kadono, K. Preparation of Water-Repellent Glass by Sol–Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane. *J. Colloid Interface Sci.***2001**, *235* (1), 130–134. https://doi.org/10.1006/jcis.2000.7313.
- (4) Hozumi, A.; Takai, O. Effect of Hydrolysis Groups in Fluoro-Alkyl Silanes on Water Repellency of Transparent Two-Layer Hard-Coatings. *Appl. Surf. Sci.*1996, 103 (4), 431– 441. https://doi.org/10.1016/S0169-4332(96)00534-X.