Supplementary Information

Partitioning Photochemically Formed CO₂ into Clathrate Hydrate under Interstellar Conditions

Gaurav Vishwakarma¹, Bijesh K. Malla¹, Rajnish Kumar^{2,3*}, and Thalappil Pradeep^{1,3*}

¹DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

²Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

³International Centre for Clean Water, IIT Madras Research Park, Chennai 600113, India.

Corresponding authors

*Email: pradeep@iitm.ac.in, rajnish@iitm.ac.in

This pdf file includes: Fig S1 to S6 (pages S2-S8) Table S1 (page S3)

Fig. S1. Full range RAIR spectra of 100 ML H_2O -CO (1.46) mixture before and after VUV irradiation at 10 K. The ice mixture was co-deposited on Ru(0001) at 10 K, and the resulting sample was exposed to VUV irradiation for 2 h.

Position (cm ⁻¹)	Vibrational Mode	Molecule
~3704	Combination	CO ₂
~3648	OH dangling	H ₂ O
~3400	OH stretch	H ₂ O
2353, 2346	¹² CO stretch	CO ₂
2282, 2278	¹³ CO stretch	¹³ CO ₂
2149, 2141	¹² CO stretch	СО
2092	¹³ CO stretch	¹³ CO
1850	CO stretch	НСО
1721	CO stretch	H ₂ CO
~1650	HOH bending	H ₂ O
1500	H ₂ scissor	H ₂ CO
1219	C-O stretch	НСООН
1140	CH ₃ rocking	CH ₃ OH
1017	C-O stretch	CH ₃ OH

Table S1. Photochemical products obtained during 2 h of VUV irradiation of 100 ML H₂O-CO (1.46) mixture at 10 K

Fig. S2. Irradiation time-dependent RAIR spectra of 50 ML pure CO ice at 10 K in the 2480-2080 cm⁻¹ region. Before VUV irradiation, a peak at 2142 cm⁻¹ was observed for pure CO ice. During irradiation, we could not observe a decrease in the intensity of the peak at 2142 cm⁻¹; instead, a very small increase was observed, as presented in inset. This may be due to the background deposition of CO on the ice sample with time or physical changes induced by

Fig. S3. Temperature-dependent normalized RAIR spectra of photolyzed 50 ML H₂O-CO (~4) ice in the 10–120 K window in the C=O antisymmetric stretching region of CO₂. The ice sample was prepared by co-depositing H₂O and CO vapors on Ru(0001) at 10 K. The as-prepared ice sample was photolyzed by VUV for 1 h. After photolysis at 10 K, the ice sample was heated at a rate of 5 K min⁻¹ to 120 K, and RAIR spectra were collected at regular intervals. When the sample was heated beyond the desorption temperature of CO₂, around 90 K, the peak at 2353 cm⁻¹ disappeared, while the peak at 2346 cm⁻¹ persisted. This confirms our identification of the 2353 cm⁻¹ peak as CO₂ trapped within the water matrix and the 2346 cm⁻¹ peak as CO₂ confined inside the CH cage (5¹² cage of sI).

Fig. S4. Irradiation time-dependent RAIR spectra of 100 ML H₂O-CO (7.72) mixture at 10 K in the (**a**) C=O stretching region of CO and (**b**) C=O antisymmetric stretching region of CO₂. (**c**) Evolution of C=O stretching region of CO during VUV irradiation of H₂O-CO mixture. Integrated area of the 2180-2110 cm⁻¹ band was plotted as a function of irradiation time for experiments carried out at 10 (yellow square), 20 (red circle), and 30 K (blue triangle). (**d**) Evolution of C=O antisymmetric stretching region of CO₂ during VUV irradiation of H₂O-CO mixture. Integrated area of the 2380-2320 cm⁻¹ band was plotted as a function of irradiation time for experiments carried out at 10 (yellow square), 20 (red circle), and 30 K (blue triangle). Inset plots show the evolution of 2346 cm⁻¹ (CO₂ in CH phase) and 2353 cm⁻¹ (CO₂ in ASW phase) bands as a function of irradiation time, derived by deconvoluting the 2380-2320 cm⁻¹ band. In Figs. (**c**) and (**d**), lines are only to guide the eye.

Fig. S5. Irradiation time-dependent RAIR spectra of 100 ML H₂O-CO (4.09) mixture at 10 K in the (**a**) C=O stretching region of CO and (**b**) C=O antisymmetric stretching region of CO₂. (**c**) Evolution of C=O stretching region of CO during VUV irradiation of H₂O-CO mixture. Integrated area of the 2180-2110 cm⁻¹ band was plotted as a function of irradiation time for experiments carried out with ice mixtures having H₂O to CO ratios, 1.46 (yellow triangle), 4.09 (red circle), and 7.72 (blue square). (**d**) Evolution of C=O antisymmetric stretching region of CO₂ during VUV irradiation of H₂O-CO mixture. Integrated area of the 2380-2320 cm⁻¹ band was plotted as a function of irradiation time for experiments carried out with ice mixtures having H₂O to CO ratios, 1.46 (yellow triangle), 4.09 (red circle), and 7.72 (blue square). Integrated area of the 2380-2320 cm⁻¹ band was plotted as a function of irradiation time for experiments carried out with ice mixtures having H₂O to CO ratios, 1.46 (yellow triangle), 4.09 (red circle), and 7.72 (blue square). Inset plots show the evolution of 2346 cm⁻¹ (CO₂ in CH phase) and 2353 cm⁻¹ (CO₂ in ASW phase) bands as a function of irradiation time, derived by deconvoluting the 2380-2320 cm⁻¹ band. In Figs. (**c**) and (**d**), lines are only to guide the eye.

Fig. S6. Surface structure of photolyzed H₂O-CO mixture obtained from Cs⁺ ion scattering experiment. The mass spectrum of the irradiated H₂O-CO mixture was obtained by colliding the sample with 60 eV Cs⁺ ions at 10 K. The peaks marked in the mass spectrum correspond to the adducts of Cs⁺ (m/z = 133) with H₂O (m/z = 151), CO (m/z = 161), HCO (m/z = 162), H₂CO (m/z = 163), CH₃OH (m/z = 165), HCOOH (m/z = 179). For clarity, the remaining peaks were not assigned. Inset illustrates a schematic representation of the Cs⁺ ion scattering experiment.