Supporting Information

Extensive Polymerization of Atomically Precise Alloy Metal Clusters During Solid State Reactions

B. S. Sooraj,^{\dagger ,||} Jayoti Roy,^{\dagger ,||} Manish Mukherjee,^{\dagger , \ddagger} Anagha Jose,^{\dagger} and Thalappil Pradeep^{*, \dagger ,§}

[†]Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India. E-mail: *pradeep@iitm.ac.in*

[‡]Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Kolkata 741246, India.

[§]International Centre for Clean Water, Chennai 600113, India.

^{||}These authors contributed equally.

Table of contents

Title	Description	Page no
1.	Experimental section	3
2.	Instrumentation	3
Figure S1	UV-Vis absorption spectrum of (a) $[Au_{25}(PET)_{18}]^{-}$, and (b) $[Ag_{25}(DMBT)_{18}]^{-}$ cluster	4
Figure S2	ESI-MS of (a) $[Au_{25}(PET)_{18}]^{-}$, and (b) $[Ag_{25}(DMBT)_{18}]^{-}$ cluster	4

Figure S3	Time-dependent electrospray ionization mass spectra (ESI MS), after grinding 1:3 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	5
Figure S4	Heat map plot obtained from the mass spectra of grinding 1:3 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	5
Figure S5	Time-dependent electrospray ionization mass spectra (ESI MS), after grinding 3:1 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	6
Figure S6	Heat map plot obtained from the mass spectra of grinding 3:1 mixture of $Ag_{25}(SR)_{18}$: Au ₂₅ (SR) ₁₈ , in solid state	6
Figure S7	Time-dependent electrospray ionization mass spectra (ESI MS), after grinding 1:5 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	7
Figure S8	Heat map plot obtained from the mass spectra of grinding 1:5 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	7
Figure S9	Time-dependent electrospray ionization mass spectra (ESI MS), after grinding 5:1 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	8
Figure S10	Heat map plot obtained from the mass spectra of grinding 5:13 mixture of Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈ , in solid state	8
Figure S11	ESI-MS showing various homopolymers of Au ₂₅ (SR) ₁₈ at m/z 7393, and Ag ₂₅ (SR) ₁₈ at m/z 5167	9
Figure S12	ESI-MS of the hexamer species [Ag ₇₂ Au ₇₈ (SR) ₁₀₈] ⁶⁻ , along with its theoretical fitting	9
Figure S13	Solid state UV-Vis absorption spectra of mixing of clusters	10
Figure S14	The time-dependent UV-Vis absorption spectra measured by dissolving the ground mixture in cold acetonitrile	10
Figure S15	The degradation peaks after the reaction, for different ratios of $Ag_{25}(SR)_{18}$ and $Au_{25}(SR)_{18}$	11
Table S1	The detailed information of all the polymeric species observed in mass spectrometry studies of 1:1 Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈	11
Table S2	The detailed information of all the polymeric species observed in mass spectrometry studies of 1:3 Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈	12
Table S3	The detailed information of all the polymeric species observed in mass spectrometry studies of 3:1 Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈	12
Table S4	The detailed information of all the polymeric species observed in mass spectrometry studies of 1:5 Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈	13
Table S5	The detailed information of all the polymeric species observed in mass spectrometry studies of 5:1 Ag ₂₅ (SR) ₁₈ : Au ₂₅ (SR) ₁₈	14

1. Experimental section

Synthesis of HAuCl₄.3H₂O

A 24 karat gold coin, weighing 2 g, was taken in a round bottom flask and added 10 ml of conc. HCl into it. Then it was heated at 60°C for 5 minutes. Into the hot solution, 4 ml of conc. HNO₃ was added dropwise, and bubble formation was observed. Continue the addition of HNO₃ until the bubbles are not formed. The solution was heated until the gold dissolves completely. After the complete dissolution of gold, the solution was cooled down to room temperature. Then it is further cooled at 0°C for 24 h, to precipitate out the impurities. The precipitate were removed by filtration, and 5 ml of distilled water was added to the filtrate. Further the filtrate was kept for slow evaporation, in presence of the drying agent phosphorus pentaoxide, to get the crystalline product HAuCl₄.3H₂O.

2. Instrumentation

UV-Vis absorption spectra of the cluster in their respective solution were optimized using a PerkinElmer Lambda 25 spectrophotometer in the 200–1100 nm wavelength range. The slit width used for the measurement is 1 nm.

Mass spectra of all the clusters were measured using Waters Synapt G2Si HDMS instrument. The instrument is equipped with an electrospray ionization source, mass selected ion trap, ion mobility cells, and time of flight mass analyzer. All MS measurements were acquired in the negative ion mode. An optimized operating conditions such as flow rate 15-20 μ L/min, capillary voltage 2-3 kV, cone voltage 20 V, source offset 10 V, desolvation gas flow 400 L/min and source temperature 80-100 °C were used for the measurements.

The interaction between the clusters lead to the formation of multiple polymeric species as observed in ESI-MS (see **Figure 1, 2**), making it difficult to assign charge states in the case of metal-exchanged alloy clusters and their polymeric entities, especially when isotopic resolution

is lacking and charge states overlap within complex mass spectra. Experimentally acquired ESI MS spectra were analyzed using UniDec software to address these challenges.¹ This approach allowed for a clearer visualization of the relative intensities of cluster ions, including the less intense polymer ions, in a 'Heat map' plot, and helped to reduce mass uncertainty in the spectrum.

Figure S1. UV-Vis absorption spectra of (a) $[Au_{25}(PET)_{18}]^-$, and (b) $[Ag_{25}(DMBT)_{18}]^-$ clusters in acetonitrile solvent.

Figure S2. ESI-MS of (a) $[Ag_{25}(DMBT)_{18}]^-$, and (b) $[Au_{25}(PET)_{18}]^-$ cluster, measured in acetonitrile solvent.

Figure S3. Time-dependent ESI-MS, after grinding 1:3 mixture of Ag₂₅(SR)₁₈:Au₂₅(SR)₁₈, in the solid state.

Figure S4. Heat map plot obtained from the mass spectra of grinding 1:3 mixture of $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$, in the solid state.

Figure S5. Time-dependent ESI-MS, after grinding 3:1 mixture of Ag₂₅(SR)₁₈:Au₂₅(SR)₁₈, in the solid state.

Figure S6. Heat map plot obtained from the mass spectra of grinding 3:1 mixture of $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$, in the solid state.

Figure S7. Time-dependent ESI-MS, after grinding 1:5 mixture of $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$, in the solid state.

Figure S8. Heat map plot obtained from the mass spectra of grinding 1:5 mixture of $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$, in the solid state.

Figure S9. Time-dependent ESI-MS, after grinding a 5:1 mixture of Ag₂₅(SR)₁₈:Au₂₅(SR)₁₈ in the solid state.

Figure S10. Heat map plot obtained from the mass spectra, of grinding 5:1 mixture of $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$, in the solid state.

Figure S11. ESI-MS showing various homopolymers of $Au_{25}(SR)_{18}$ at m/z 7393, i.e., $[Au_{125}(SR)_{90}]^{5-}$, $[Au_{100}(SR)_{72}]^{4-}$, $[Au_{75}(SR)_{54}]^{3-}$, and $[Au_{50}(SR)_{25}]^{2-}$, and $Ag_{25}(SR)_{18}$ at m/z 5167, i.e., $[Ag_{125}(SR)_{90}]^{5-}$, $[Ag_{100}(SR)_{72}]^{4-}$, $[Ag_{75}(SR)_{54}]^{3-}$, and $[Ag_{50}(SR)_{25}]^{2-}$.

Figure S12. ESI-MS of the hexamer species $[Ag_{72}Au_{78}(SR)_{108}]^{6-}$, along with its theoretical fitting. The instrumental resolution was poor at high mas range to clearly resolve all the peaks.

Figure S13. Solid state UV-Vis absorption spectra upon mixing the clusters in the solid state. Due to the limitation of the instrument, we could not measure the spectra above 800 nm.

Figure S14. The time-dependent UV-Vis absorption spectra measured by dissolving the ground mixture in cold acetonitrile.

Figure S15. The degradation peaks after the reaction, for different ratios of $Ag_{25}(SR)_{18}$ and $Au_{25}(SR)_{18}$.

Table S1. The detailed information of all the polymeric species observed in massspectrometry studies of 1:1 Ag25(SR)18:Au25(SR)18.

m/z	Monomers	m/z	Dimers	m/z	Trimers	m/z	Tetramers
7393	Au ₂₅ (SR) ₁₈	7350	AgAu ₂₄ (SR) ₁₈ + Au ₂₅ (SR) ₁₈			5545	Ag ₈₃ Au ₁₇ (SR) ₇₂
7305	AgAu ₂₄ (SR) ₁₈	7308	2[AgAu ₂₄ (SR) ₁₈]			5590	Ag ₈₁ Au ₁₉ (SR) ₇₂
7216	Ag ₂ Au ₂₃ (SR) ₁₈	7260	AgAu ₂₄ (SR) ₁₈ + Ag ₂ Au ₂₃ (SR) ₁₈			5634	Ag ₇₉ Au ₂₁ (SR) ₇₂
7127	Ag ₃ Au ₂₂ (SR) ₁₈	7172	Ag ₃ Au ₂₂ (SR) ₁₈ + Ag ₂ Au ₂₃ (SR) ₁₈			5679	Ag ₇₇ Au ₂₃ (SR) ₇₂

Table S2. The detailed information of all the polymeric species observed in mass spectrometrystudies of 1:3 $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$.

m/z	Monomers	m/z	Dimers	m/z	Trimers	m/z	Tetramers
5167	Ag ₂₅ (SR) ₁₈	6280	Au ₂₅ Ag ₂₅ (SR) ₃₆	5167	3[Ag ₂₅ (SR) ₁₈]	5167	4[Ag ₂₅ (SR) ₁₈]
5256	AuAg ₂₄ (SR) ₁₈	6235	Au ₂₄ Ag ₂₆ (SR) ₃₆	7216	3[Ag ₂ Au ₂₃ (SR) ₁₈]	7393	4[Au ₂₅ (SR) ₁₈]
5345	Au ₂ Ag ₂₃ (SR) ₁₈	6324	Au ₂₆ Ag ₂₄ (SR) ₃₆	7305	3[AgAu ₂₄ (SR) ₁₈]		
5434	Au ₃ Ag ₂₂ (SR) ₁₈	6189	Au ₂₃ Ag ₂₇ (SR) ₃₆	7393	3[Au ₂₅ (SR) ₁₈]		
5702	Au ₆ Ag ₁₉ (SR) ₁₈	6144	Au ₂₂ Ag ₂₈ (SR) ₃₆				
5792	Au ₇ Ag ₁₈ (SR) ₁₈	6100	Au ₂₁ Ag ₂₉ (SR) ₃₆				
5970	Au ₉ Ag ₁₆ (SR) ₁₈	6369	Au ₂₇ Ag ₂₃ (SR) ₃₆				
		6414	Au ₂₈ Ag ₂₂ (SR) ₃₆				
		6459	Au ₂₉ Ag ₂₁ (SR) ₃₆				

Table S3. The detailed information of all the polymeric species observed in mass spectrometry studies of $3:1 \text{ Ag}_{25}(\text{SR})_{18}$: Au₂₅(SR)₁₈.

m/z	Monomers	m/z	Dimers	m/z	Trimers	m/z	Tetramers
6324	Ag ₁₂ Au ₁₃ (SR) ₁₈	6324	2[Ag ₁₂ Au ₁₃ (SR) ₁₈]	6324	3[Ag ₁₂ Au ₁₃ (SR) ₁₈]	6324	4[Ag ₁₂ Au ₁₃ (SR) ₁₈]
6413	Ag ₁₁ Au ₁₄ (SR) ₁₈	6370	Ag ₁₂ Au ₁₃ (SR) ₁₈ + Ag ₁₁ Au ₁₄ (SR) ₁₈	6413	3[Ag ₁₁ Au ₁₄ (SR) ₁₈]	6347	3[Ag ₁₂ Au ₁₃ (SR) ₁₈] + Ag ₁₁ Au ₁₄ (SR) ₁₈
6504	Ag ₁₀ Au ₁₅ (SR) ₁₈	6413	Ag ₁₁ Au ₁₄ (SR) ₁₈ + Ag ₁₁ Au ₁₄ (SR) ₁₈	6264	2[Ag ₁₃ Au ₁₂ (SR) ₁₈] + Ag ₁₂ Au ₁₃ (SR) ₁₈	6390	3[Ag ₁₁ Au ₁₄ (SR) ₁₈] + Ag ₁₂ Au ₁₃ (SR) ₁₈
6593	Ag ₉ Au ₁₆ (SR) ₁₈	6459	Ag ₁₁ Au ₁₄ (SR) ₁₈ + Ag ₁₀ Au ₁₅ (SR) ₁₈	6354	2[Ag ₁₂ Au ₁₃ (SR) ₁₈] + Ag ₁₁ Au ₁₄ (SR) ₁₈	6436	3[Ag ₁₁ Au ₁₄ (SR) ₁₈] + Ag ₁₀ Au ₁₅ (SR) ₁₈
6683	Ag ₈ Au ₁₇ (SR) ₁₈	6549	Ag ₁₀ Au ₁₅ (SR) ₁₈ + Ag ₉ Au ₁₆ (SR) ₁₈	6384	2[Ag ₁₁ Au ₁₄ (SR) ₁₈] + Ag ₁₂ Au ₁₃ (SR) ₁₈	6480	3[Ag ₁₀ Au ₁₅ (SR) ₁₈] + Ag ₁₁ Au ₁₄ (SR) ₁₈
6771	Ag ₇ Au ₁₈ (SR) ₁₈	6638	Ag ₉ Au ₁₆ (SR) _{18 +} Ag ₈ Au ₁₇ (SR) ₁₈	6472	2[Ag ₁₀ Au ₁₅ (SR) ₁₈] + Ag ₁₁ Au ₁₄ (SR) ₁₈	6256	3[Ag ₁₃ Au ₁₂ (SR) ₁₈] + Ag ₁₂ Au ₁₁ (SR) ₁₈
6860	Ag ₆ Au ₁₉ (SR) ₁₈	6683	Ag ₈ Au ₁₇ (SR) ₁₈ + Ag ₈ Au ₁₇ (SR) ₁₈	6530	2[Ag ₁₀ Au ₁₅ (SR) ₁₈] + Ag ₉ Au ₁₆ (SR) ₁₈	6213	3[Ag ₁₃ Au ₁₂ (SR) ₁₈] + Ag ₁₄ Au ₁₁ (SR) ₁₈
6145	Ag ₁₄ Au ₁₁ (SR) ₁₈	6771	Ag ₇ Au ₁₈ (SR) ₁₈ + Ag ₇ Au ₁₈ (SR) ₁₈	6204	2[Ag ₁₃ Au ₁₂ (SR) ₁₈] + Ag ₁₄ Au ₁₁ (SR) ₁₈	6168	3[Ag ₁₄ Au ₁₁ (SR) ₁₈] + Ag ₁₃ Au ₁₂ (SR) ₁₈
6234	Ag ₁₃ Au ₁₂ (SR) ₁₈	6817	Ag ₆ Au ₁₉ (SR) ₁₈ + Ag ₇ Au ₁₈ (SR) ₁₈	6176	2[Ag ₁₄ Au ₁₁ (SR) ₁₈] + Ag ₁₃ Au ₁₂ (SR) ₁₈	6123	3[Ag ₁₄ Au ₁₁ (SR) ₁₈] + Ag ₁₅ Au ₁₀ (SR) ₁₈
6056	Ag ₁₅ Au ₁₀ (SR) ₁₈	6861	Ag ₆ Au ₁₉ (SR) ₁₈ + Ag ₆ Au ₁₉ (SR) ₁₈	6114	2[Ag ₁₄ Au ₁₁ (SR) ₁₈] + Ag ₁₅ Au ₁₀ (SR) ₁₈	6079	3[Ag ₁₅ Au ₁₀ (SR) ₁₈] + Ag ₁₄ Au ₁₁ (SR) ₁₈
5967	Ag ₁₆ Au ₉ (SR) ₁₈	6145	Ag ₁₄ Au ₁₁ (SR) ₁₈ + Ag ₁₄ Au ₁₁ (SR) ₁₈				
5878	Ag ₁₇ Au ₈ (SR) ₁₈	6189	Ag ₁₄ Au ₁₁ (SR) ₁₈ + Ag ₁₃ Au ₁₂ (SR) ₁₈				

5790	Ag ₁₈ Au ₇ (SR) ₁₈	6234	Ag ₁₃ Au ₁₂ (SR) ₁₈ +		
		6279	Ag ₁₃ Au ₁₂ (SR) ₁₈ +		
			Ag ₁₂ Au ₁₃ (SR) ₁₈		
		6324	Ag ₁₂ Au ₁₃ (SR) ₁₈ +		
		0321	Ag ₁₂ Au ₁₃ (SR) ₁₈		
		6102	Ag ₁₄ Au ₁₁ (SR) ₁₈ +		
		0102	Ag ₁₅ Au ₁₀ (SR) ₁₈		
		6011	Ag ₁₅ Au ₁₀ (SR) ₁₈ +		
		6011	Ag ₁₆ Au ₉ (SR) ₁₈		
		5067	Ag ₁₆ Au ₉ (SR) ₁₈ +		
		5967	Ag ₁₆ Au ₉ (SR) ₁₈		
		5022	Ag ₁₆ Au ₉ (SR) ₁₈ +		
		5922	Ag ₁₇ Au ₈ (SR) ₁₈		
		F 0 7 0	Ag ₁₇ Au ₈ (SR) ₁₈ +		
		58/8	Ag ₁₇ Au ₈ (SR) ₁₈		
		F022	Ag ₁₈ Au ₇ (SR) ₁₈ +		
		5833	Ag ₁₇ Au ₈ (SR) ₁₈		
		5790	2[Ag ₁₈ Au ₇ (SR) ₁₈]		

Table S4. The detailed information of all the polymeric species observed in mass spectrometry studiesof 1:5 $Ag_{25}(SR)_{18}$: $Au_{25}(SR)_{18}$.

m/z	Monomers	m/z	Dimers	m/z	Trimers	m/z	Tetramers
					AuAg ₄₉ (SR) ₃₆		3[AuAg ₂₄ (SR) ₁₈]
5167	Ag ₂₅ (SR) ₁₈	5212	AuAg ₄₉ (SR) ₃₆	5227	+	5278	+
					AuAg ₂₄ (SR) ₁₈		[Au ₂ Ag ₂₃ (SR) ₁₈]
5256	ΔιιΔσον(SR)νο	5300	$\Delta u_{2} \Delta \sigma_{4\pi}(SR)_{2\pi}$			5323	3[Au ₂ Ag ₂₃ (SR) ₁₈]
5250		5500	Au3Ag4/(3N/36			5525	+ [AuAg ₂₄ (SR) ₁₈]
							$3[Au_2Ag_{23}(SR)_{18}]$
5345	Au ₂ Ag ₂₃ (SR) ₁₈	5390	Au ₅ Ag ₄₅ (SR) ₃₆			5367	+
							$[Au_3Ag_{22}(SR)_{18}]$
							$3[Au_3Ag_{22}(SR)_{18}]$
5434	Au ₃ Ag ₂₂ (SR) ₁₈	5480	Au7Ag43(SR)36			5412	+
							$[Au_2Ag_{23}(SR)_{18}]$
							$3[Au_4Ag_{21}(SR)_{18}]$
5523	$Au_4Ag_{21}(SR)_{18}$	5968	Au ₁₈ Ag ₃₂ (SR) ₃₆			5501	+
							$[Au_3Ag_{22}(SR)_{18}]$
5612	AurAgoo(SR)10	6013	AU10Ag21(SR)26			6080	Au ₂₁ Ag ₂₉ (SR) ₃₆ +
5012	7 (03, 1820(011)18	0015	, (019, (B31(O1()30			0000	Au ₂₀ Ag ₃₀ (SR) ₃₆
		6058	$\Delta \mu_{20} \Delta \sigma_{20} (SR)_{20}$			6125	$Au_{21}Ag_{29}(SR)_{36} +$
		0050	/ 020/ 030(017)36			0125	Au ₂₂ Ag ₂₈ (SR) ₃₆
		6102	$\Delta \mu_{24} \Delta \sigma_{20} (SR)_{20}$			6169	Au ₂₂ Ag ₂₈ (SR) ₃₆ +
		0102	//021//829(51/)36			0105	Au ₂₃ Ag ₂₇ (SR) ₃₆
		6147	$\Delta \mu_{22} \Delta \sigma_{22} (SR)_{22}$			6213	Au ₂₃ Ag ₂₇ (SR) ₃₆ +
		5147	10227628(31)36			5215	Au ₂₄ Ag ₂₆ (SR) ₃₆
		6191	Au ₂₃ Ag ₂₇ (SR) ₃₆			6258	Au ₂₅ Ag ₂₅ (SR) ₃₆ +

					Au ₂₄ Ag ₂₆ (SR) ₃₆
	6236	Au ₂₄ Ag ₂₆ (SR) ₃₆		6303	Au ₂₅ Ag ₂₅ (SR) ₃₆ + Au ₂₆ Ag ₂₄ (SR) ₃₆
	6280	Au ₂₅ Ag ₂₅ (SR) ₃₆			
	6325	Au ₂₆ Ag ₂₄ (SR) ₃₆			
	6369	Au ₂₇ Ag ₂₃ (SR) ₃₆			

Table S5. The detailed information of all the polymeric species observed in mass spectrometrystudies of $5:1 \text{ Ag}_{25}(\text{SR})_{18}$: $\text{Au}_{25}(\text{SR})_{18}$.

m/z	Monomers	m/z	Dimers	m/z	Trimers	m/z	Tetramers
5167	Ag ₂₅ (SR) ₁₈	5211	Ag ₂₅ (SR) ₁₈ + AuAg ₂₄ (SR) ₁₈	5285	[AuAg ₂₄ (SR) ₁₈] + [Au ₃ Ag ₄₇ (SR) ₃₆]	5322	[Au ₃ Ag ₄₇ (SR) ₃₆] + [Au ₄ Ag ₄₆ (SR) ₃₆]
5256	AuAg ₂₄ (SR) ₁₈	5300	AuAg ₂₄ (SR) ₁₈ + Au ₂ Ag ₂₃ (SR) ₁₈	5344	[Au ₃ Ag ₂₂ (SR) ₁₈] + [Au ₃ Ag ₄₇ (SR) ₃₆]	5410	[Au ₅ Ag ₄₅ (SR) ₃₆] + [Au ₆ Ag ₄₄ (SR) ₃₆]
5344	Au ₂ Ag ₂₃ (SR) ₁₈	5388	Au ₂ Ag ₂₃ (SR) ₁₈ + Au ₃ Ag ₂₂ (SR) ₁₈	5373	[Au ₂ Ag ₂₃ (SR) ₁₈] + [Au ₅ Ag ₄₅ (SR) ₃₆]		
5432	Au ₃ Ag ₂₂ (SR) ₁₈	5477	Au3Ag22(SR)18+ Au4Ag21(SR)18	5432	[Au ₄ Ag ₂₁ (SR) ₁₈] + [Au ₅ Ag ₄₅ (SR) ₃₆]		
5521	Au ₄ Ag ₂₁ (SR) ₁₈	5566	Au₄Ag₂1(SR)18 + Au₅Ag20(SR)18	5489	[Au ₄ Ag ₂₁ (SR) ₁₈] + [Au ₇ Ag ₄₃ (SR) ₃₆]		
5610	Au5Ag20(SR)18	5656	Au5Ag20(SR)18+ Au6Ag19(SR)18	5521	[Au ₅ Ag ₂₀ (SR) ₁₈] + [Au ₇ Ag ₄₃ (SR) ₃₆]		
5699	Au ₆ Ag ₁₉ (SR) ₁₈	5745	Au ₆ Ag ₁₉ (SR) ₁₈ + Au ₇ Ag ₁₈ (SR) ₁₈	5582	[Au ₅ Ag ₂₀ (SR) ₁₈] + [Au ₉ Ag ₄₁ (SR) ₃₆]		
5788	Au ₇ Ag ₁₈ (SR) ₁₈	5833	Au ₇ Ag ₁₈ (SR) ₁₈ + Au ₈ Ag ₁₇ (SR)1 ₈				
5877	Au ₈ Ag ₁₇ (SR) ₁₈	5922	Au ₈ Ag ₁₇ (SR) ₁₈ + Au ₉ Ag ₁₆ (SR) ₁₈				
6055	Au ₁₀ Ag ₁₅ (SR) ₁₈	6011	Au ₉ Ag ₁₆ (SR) ₁₈ + Au ₁₀ Ag ₁₅ (SR) ₁₈				
6144	Au ₁₁ Ag ₁₄ (SR) ₁₈						
6233	Au ₁₂ Ag ₁₃ (SR) ₁₈						
6322	Au ₁₃ Ag ₁₂ (SR) ₁₈						

References

(1) Marty, M. T.; Baldwin, A. J.; Marklund, E. G.; Hochberg, G. K. A.; Benesch, J. L. P.; Robinson, C. V. Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary Interactions to Polydisperse Ensembles. *Anal. Chem.* **2015**, 87 (8), 4370–4376. https://doi.org/10.1021/acs.analchem.5b00140.