Supporting Information for

From Solution to Microstructures in Minutes: Microdroplet-Derived Stand-alone TiO_2 Surfaces for Simultaneous Water Harvesting and Treatment

Keerthana Unni, Jenifer Shantha Kumar, Anirban Som, Depanjan Sarkar*, and Thalappil Pradeep*

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India.

Centre of Excellence on Molecular Materials and Functions, Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India.

International Centre for Clean Water, Indian Institute of Technology Madras Research Park, Chennai, 600013.

Supporting Information Content

Total number of pages-10

Total number of figures-15

Total number of tables-1

Table of Contents

Sl. No	Title	Page no
	FESEM image and EDS spectrum of TiO ₂	
Figure S1	microstructures	S2
	TEM image of TiO ₂ structure formed after two	
Figure S2	minutes of deposition.	\$3
Figure S3	FESEM image of deposited TiO ₂ on an ITO plate	S3
	A water droplet roll-off experiment on TiO ₂	
Figure S4	microstructure surface	S3
	A water droplet adhesion experiment on TiO ₂	
Figure S5	microstructures and SS wire mesh	S4
	FESEM images and EDS spectra of CuO and ZnO	
Figure S6	microstructures	S4
	The contact angles of CuO-coated SS mesh and ZnO-	
Figure S7	coated mesh	S4

	Time-dependent FESEM images of TiO ₂	
Figure S8	microstructures	S5
	FESEM image of TiO ₂ structures at higher deposition	
Figure S9	rate	S6
Figure S10	Optical image of a nESI tip S6	
Figure S11	Atmospheric water harvesting on TiO ₂ microstructures S7	
Figure S12	FESEM of surface immersed in water S7	
	Optical image of TiO ₂ microstructures during the	
Figure S13	AWC experiment.	S8
Figure S14	Mass spectrum for ibuprofen degradation	S8
Figure S15	Bacterial activity	S9
	Ibuprofen degradation products and m/z of the	
Table S1	corresponding ions	S9
		AVI file is
Video S1	Video of water capture in TiO ₂ microstructure	attached

Figure S1. FESEM image and EDS spectrum of TiO_2 microstructures. The EDS-derived atomic percentages are presented in the table. The carbon peaks in the EDS spectra are attributed to carbon tape used to fix the sample on the SEM stub, with some contribution possibly from the organic counterpart of the precursors deposited during ESD. The Fe peak is attributed to the stainless-steel wire mesh.

Figure S2. TEM image of TiO_2 structures formed after two minutes of deposition time.

Figure S3. FESEM image of deposited TiO₂ on an ITO plate.

Figure S4. A water droplet roll-off experiment on TiO_2 microstructure surface.

Figure S5. A water droplet adhesion experiment on (A-C) TiO_2 microstructure surface and on (D-F) SS wire mesh showing the superhydrophobicity of the TiO_2 structures.

Figure S6. FESEM images and EDS spectra of A) CuO and B) ZnO microstructures. Elemental percentages are presented as insets.

Figure S7. The contact angles of A) CuO-coated SS mesh and B) ZnO-coated SS mesh.

Figure S8. FESEM images of TiO_2 microstructures after ESD of A) 30 min, B) 60 min, C) 90 min, and D) 120 min at a junction of a wire-mesh.

Figure S9. FESEM images of TiO₂ microstructures at higher deposition rate.

Figure S10. Optical image of a nESI tip (30 $\mu m).$

Figure S11. Atmospheric water harvesting on the TiO_2 microstructure, A) water nucleation on 1 h electrosprayed surface and B) water nucleation on 2 h electrosprayed surface.

Figure S12. FESEM of the surface immersed in water for 1 h.

Figure S13. Optical image of TiO_2 microstructures during the AWC experiment. The length measurements indicate the area that was considered for calculating the AWC efficiency.

Figure S14. Mass spectrum showing photocatalytic degradation of ibuprofen on TiO₂ surface.

Figure S15. A) Growth of *E.coli* colonies on a) SS mesh, b) drop casted TTIP on an SS mesh, c) SS mesh after sunlight exposure, d) drop casted TTIP on SS mesh after sunlight exposure. B) Bar diagram showing the retained antibacterial activity of the TiO₂ surface after 5 repeated cycles of exposure of *E.coli* bacteria.

Table S1. Ibuprofen degradation products and m/z of the corresponding negative ions.

S9

191	
177	
175	
159	
149	HO
133	

Video S1 is available separately as an AVI file.