
Simulated Interstellar Photolysis of N2O Ice: Selectivity in
Photoproducts
Published as part of The Journal of Physical Chemistry C specialissue “Heterogeneous Drivers of Ice Formation”.

Bijesh K. Malla, Soham Chowdhury, Devansh Paliwal, Hanoona K. M., Gaurav Vishwakarma,
Rabin Rajan J. Methikkalam, and Thalappil Pradeep*

Cite This: https://doi.org/10.1021/acs.jpcc.4c06624 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Thermal diffusion and recombination control the kinetics
of photochemical reactions of reactive radicals formed by ultraviolet
photon irradiation in interstellar ices. Here, we show that upon vacuum
ultraviolet photolysis, N2O ice produces O3 and several oxides of
nitrogen, such as NO, NO2, N2O2, N2O3, N2O4, and N2O5 in interstellar
ice mimics. Photoproducts within the bulk and on the surface were
analyzed using reflection absorption infrared spectroscopy and Cs+ ion-
based secondary ion mass spectrometry, while desorbed species were
studied using temperature-programmed desorption mass spectrometry.
Notably, thermal annealing of the photoirradiated ice to 90 K resulted in
a significant increase in NO and N2O3. Photoirradiation at 10 K revealed
the dominance of three atom photoproducts, such as NO2 and O3. In
contrast, irradiation at 50 K significantly enhanced the production of four
or higher atom photoproducts (N2O2, N2O3, N2O4, and N2O5). This behavior is attributed to the restricted diffusion of reactive
radicals and unstable oxygen species (O and O3) at 10 K, which confines radical−radical reactions to three or fewer atom
photoproducts, whereas higher temperatures facilitate oxygen and other radical diffusion and recombination, yielding heavier
photoproducts. These results throw light on the thermal diffusion effects on the kinetics of photoproducts in interstellar ice mimics.

■ INTRODUCTION
The photochemistry of the molecular ices present in the
interstellar medium (ISM) plays a significant role in forming
complex organic molecules.1 More than 300 molecules,
including neutrals, ions, and radicals, have been identified in
ISM.2 Bigger molecules such as C60, C70, and polyaromatic
hydrocarbons raise questions about their formation mecha-
nisms in cold conditions.3 Molecules, dust grains, and atoms in
the ISM are continuously exposed to ultraviolet (UV) photons
from nearby stars and other sources, leading to photochemical
reactions. These processes produce complex molecular species,
including organic compounds essential to the emergence of
life.4 Laboratory experiments involving the irradiation of
molecular ices in simulated interstellar conditions with charged
particles (ions and electrons) and UV photons have revealed
the synthesis of amino acids and nucleobases, which is crucial
for understanding the origins of biology.1,5,6 In such reactions,
diffusion of reactive intermediates plays a critical role in
determining reaction kinetics. When radicals are properly
oriented, and the reaction is barrierless, it is expected to
proceed efficiently. If the diffusion barriers are significantly
higher than the reaction barriers, reactants are likely to remain
adsorbed next to each other until the reaction occurs.7,8

Although the photochemistry of various molecules has been
reported in interstellar ice analogs, a crucial gap in our
understanding is the diffusion behavior of different radicals
within ice matrices.7,9−16 Specifically, how thermal and
nonthermal diffusion occurs across various ices at different
temperatures is not well understood.1

N2O was first detected in the gas phase within the molecular
cloud Sgr B2(M) in 1994.17 Recently, the James Webb Space
Telescope (JWST) has identified N2O in the condensed phase
within protostellar systems.18 N2O plays a major role in the
dissociation of ozone in our stratosphere.19 However, when
N2O was subjected to electron irradiation at very low
temperatures (25 K), it produced ozone in the solid phase.20

In the ISM, oxygen, and nitrogen are the major elements in
molecular clouds and star-forming regions.21−23 Despite their
ubiquity, only six molecules: nitrous oxide (N2O),17 nitroxyl
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(HNO),24,25 nitrous acid (HONO),26 fulminic acid
(HCNO),27 nitric oxide (NO),28 and hydroxylamine
(NH2OH)29 containing N−O bond have been identified in
the interstellar and circumstellar medium.

Under laboratory interstellar medium (ISM) conditions,
Jamieson et al. investigated the formation of N2O by irradiating
N2 and CO ice at 10 K with 5 keV electrons,30 where Halfen et
al. studied the gas phase formation mechanism of N2O by
radical−radical reaction.31 Sivaraman et al. demonstrated the
formation of various N−O bond-bearing molecules by
irradiating N2O ice with 1 keV electron at 25 K.20 Several
studies also exist on the radiolysis of N2O by bombarding fast
ions (14N+),32 and (136Xe23+). No report exists on the vacuum
ultraviolet (VUV) photolysis of N2O ice in ISM-simulated
conditions. Also, there is a lack of understanding of the
diffusion and recombination of radicals in different thermal
conditions. In our previous study,7 we demonstrated how
nonthermal radical diffusion in highly and less ordered methyl
chloride crystalline ice contributed to the formation of
photoproducts. The present study focuses on the thermal
diffusion of radicals in photoirradiated N2O ice. In it, we have
shown the VUV photolysis of pure N2O ice under interstellar
laboratory conditions, resulting in the formation of various N−
O bearing molecules along with O3. Photoirradiation experi-
ments conducted at both 10 and 50 K reveal distinct,
temperature-dependent distributions of photoproducts. Higher
temperatures play a crucial role in reducing the thermal
diffusion barrier for oxygen allotropes and reactive radicals,
facilitating further recombination with nitrous oxides to form

secondary photoproducts at higher temperatures. This suggests
that varying temperature conditions could significantly
influence the chemistry and composition of interstellar ices,
providing valuable insights into the complex mechanisms
underlying molecular evolution in space.

■ EXPERIMENTAL SECTION
Experimental Setup. The experiments were conducted

within an ultrahigh vacuum (UHV) instrument, extensively
described in our previous study.33−35 The instrument is
equipped with various analytical techniques, including
reflection absorption infrared spectroscopy (RAIRS), low
energy ion scattering (LEIS), temperature-programmed
desorption (TPD) mass spectrometry, Cs+ ion-based secon-
dary ion mass spectrometry (SIMS), and a VUV lamp. To
maintain a base pressure of 5 × 10−10 mbar, six turbomolecular
pumps are attached to the chambers backed by multiple oil-
free diaphragm pumps. Chamber pressure is monitored using a
Bayard-Alpert gauge, regulated by a Maxi Gauge vacuum gauge
controller (Pfeiffer, Model TPG 256 A).

To create a thin film of ice, a finely polished Ru(0001)
crystal was used as the substrate, which was attached to a
copper holder. The assembly can be cooled to 8 K by
connecting it to a helium cryostat (ColdEdge technology). The
substrate assembly can be heated to 1000 K using a resistive
heater (25 Ω), which was used to control the temperature. An
accurate ±0.5 K thermocouple sensor was used to detect the
temperature of the substrate. Before each vapor deposition
experiment, the substrate was repeatedly heated to a higher

Figure 1. Schematic presentation of experimental protocols used in this study. (a) 150 ML of N2O ice was created on Ru(0001) substrate by
molecular vapor deposition at 10 K. (b) N2O ice was irradiated with VUV photon by using deuterium lamp. (c) Photoirradiated ice was
characterized by RAIRS, RIS, and TPD-MS.
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temperature to ensure a clean surface. It is important to note
that the surface has only a minor influence on the current
investigation, as our sample is a multilayer.

■ RAIRS AND TPD-MS SETUP
Reflection−absorption infrared (RAIR) data was collected
using a Bruker FT-IR spectrometer (Vertex 70 model),
covering the 4000−550 cm−1 range and with a spectral
resolution of 2 cm−1. The IR beam was directed onto the ice
sample using a ZnSe viewport to get an incidence angle of 80
± 7°. The reflected IR beam from the sample was analyzed by
a liquid nitrogen-cooled mercury cadmium telluride (MCT)
detector (Figure 1c). Dry N2 was purged in the FTIR
spectrometer, path of the IR radiation (outside UHV), and
MCT detector compartment to reduce absorption by ambient
moisture. An average of 512 scans was used to create each
RAIR spectrum, which improved the signal-to-noise ratio. An
Extrel quadrupole mass spectrometer was used for temper-
ature-programmed desorption mass spectrometry (TPD-MS)
in an out-of-sight configuration.
VUV Source. A deuterium lamp (30 W) of VUV emission

range of 115−400 nm with a spectral bandwidth of 0.8 nm
(shown in Figure S1) was employed as the UV light source.
The VUV lamp was differentially pumped and attached to the
UHV chamber through the MgF2 window [with a cutoff at
∼114 nm (10.87 eV)]. This configuration allows the lamp to
emit light at wavelengths as short as 115 nm effectively. The
photon flux was measured to be approximately ∼6 × 1012
photons cm−2 s−1.7,36

■ SIMS SETUP
The Cs+ ion-based SIMS technique enables molecular
identification and monitoring of surface reactions.37 Cs+ (m/
z = 133) was selected for ion scattering due to their high depth
resolution of approximately 1 bilayer and their capacity to
detect neutral molecules on the N2O ice surface.38 Reactive ion
scattering (RIS) experiment was performed using Cs+ ions
with a kinetic energy of 60 eV. The Cs+ ion collides on the ice
surface, forms adducts with neutral molecules on the surface,
and drags them from the surface along its outgoing trajectory, a
process known as the RIS (Figure 1c). The Cs+ ion adducts
with the neutral molecules are driven by an ion-neutral dipole
interaction.39 The mass of the Cs+ ion adduct was determined
with a quadrupole mass analyzer. To identify the mass of

neutral photolysis products formed on the N2O ice, the mass
of Cs+ (m/z = 133) is subtracted from the mass of the Cs+ ion
adduct.
Material and Sample Preparation. As received, nitrous

oxide (N2O) (Indogas, 99.9% purity) was connected to the
main chamber through sample inlet lines controlled by high-
precision metal leak valves. 150 ML of N2O ice was prepared
by vapor deposition on Ru(0001) at 10 K (Figure 1a). The
vapor deposition coverage in the case of N2 (ion gauge
sensitivity factor was taken as 1) was expressed in monolayers
(ML), assuming 1.33 × 10−6 mbar exposure in 1 s is equal to 1
ML, which was estimated to contain ∼1.1 × 1015 molecules
cm−2, as adopted in other reports.40−42 To deposit 150 ML of
N2O ice, The chamber was backfilled with N2O (ion gauge
sensitivity factor −1.2) vapor at 5 × 10−7 mbar pressure for 5
min. The vacuum gauge was calibrated with nitrogen, and N2O
coverage may differ slightly in view of this uncorrected
pressure reading. Mass spectra were taken simultaneously
during vapor deposition to check the purity and ratio of the
deposited molecules.

■ RESULTS AND DISCUSSION
Photochemistry of N2O Ice. About 150 ML of

amorphous ice thin film was prepared by depositing N2O
vapor on Ru(0001) substrate at 10 K. Figure S2 shows the
RAIR spectrum of pure N2O ice at 10 K, where N2O is
identified by different peaks; 3495 cm−1 (ν1 + ν3), 2575 (2ν1),
2554 (ν3), 1296 (ν1), 1164 (2ν2), 591 (ν2) cm−1. Following
deposition, the sample was exposed to VUV photoirradiation
for 2 h, and the resulting RAIR spectra were recorded (Figure
2). All the photoproducts were identified by their distinct
infrared bands, consistent with the previous re-
ports.20,30,32,43−48 N2O3 is characterized by the peaks at 1863
(N−O stretch), 1832 (ν1), 1594 (ν2), and 1304 (ν3) cm−1.
Both cis(c)-N2O2, and trans(t)-N2O2 are identified by the
peaks 1855 (ν1), 1765 (ν5), 1742 (ν5) cm−1, N2O5 exhibits
peaks at 1702 (ν9), 1742 (ν1) and 736 (ν11) cm−1, while N2O4
is characterized by 1260 (ν11) and 753 (ν6 + ν11) cm−1. O3 is
identified by the peak at 1039 cm−1 (ν3), and NO and (NO)2
is identified by the 1863−1874 cm−1 (ν1) stretch.

After 2 h of irradiation at 10 K, seven major photo products-
NO, NO2, O3, N2O2, N2O4, N2O3, and N2O5 were observed in
the RAIR spectra. It is worth noting that O2 and N2, which are
also major products of photoirradiation, cannot be identified

Figure 2. RAIR spectra of 150 ML of N2O ice before and after 2 h VUV photoirradiation at 10 K in the mid-infrared region.
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by IR spectroscopy. The dissociation of N2O primarily follows
two pathways: in the first pathway, N2O dissociates to N2
molecules and atomic oxygens (1), and in the second pathway,
it produces NO and N radicals (2).49 The dissociation energy
of the bond N�N (4.93 eV) is higher than that of N�O
(1.68 eV),50 making the first dissociation pathway more
favorable, resulting in a high concentration of N2 and O
radicals.

+ +

+

N O h N O (1)

NO N (2)

2 2

Another dissociation channel of N2O is possible with the
recombination of oxygen atoms, resulting in the formation of
either two NO (3) or nitrogen and oxygen molecules (4).32

Among these four reaction channels, it can be understood that
NO is the other most abundantly produced molecule.

+ +

+

N O O NO NO (3)

N O (4)

2

2 2

Further, high reactive oxygen radicals combine to form
oxygen molecules (5), which can then combine with another
oxygen radical to form ozone molecules (6).20,32 During this
process, N2 absorbs an excess amount of energy.51 The second
most abundant product is nitrogen dioxide, formed by the
recombination of NO and oxygen radicals (7).52

+O O O2 (5)

+ + +O O N O N2 2 3 2 (6)

+NO O NO2 (7)

Higher nitrous oxide can be formed with the recombination
of N2O with the diffused O2 (8, 9), O3 (10) inside the ice
matrix.32

+N O O N O2 2 2 3 (8)

+N O O N O2 3 2 4 (9)

+N O 2O N O2 2 2 5 (10)

Further recombination of primarily produced radicals (NO
and O) and reactive molecules (NO2, O3) generates heavier
molecules through the reaction pathways outlined
below.20,32,45,52

+NO NO N O2 2 (11)

+NO NO N O2 2 3 (12)

2NO N O2 2 4 (13)

+ +2NO O N O O2 3 2 5 2 (14)

From the above reaction mechanism, it is well understood
that primary photodissociation and association lead to the
formation of small molecules with 2 to 3 atoms, such as NO,
O3, NO2, O2, N2, etc. Further recombination of these
molecules and radicals produces larger molecules like N2O3,
N2O2, N2O4, and N2O5. Here, O is the smallest reactive species
and can diffuse much faster than O2 and O3, so the reaction
path 3 can more sufficiently occur relative to paths 8, 9, and 10
at very low temperatures.

The evolution of RAIR spectra of N2O and photoproducts
with respect to irradiation time (from 0 to 4 h) are shown in
Figure S3. We considered the major infrared band for each
molecule, calculated the band area, and plotted it in Figure S4.
It was observed that all the photoproducts exhibited a
sigmoidal growth pattern. The formation of NO2 and O3
increased until 150 min and then began to saturate, as these are
primary radical associations. In contrast, c/t-N2O2, N2O4,
N2O3, and N2O5 concentrations were saturated only after 90
min. The reaction mechanism reveals that the earlier
photoproducts, NO2 and O3, are formed by recombining
NO with O, and O2 species. Other photo products emerge
from secondary photo processes, which require additional
radical recombination reactions. These secondary processes
may be hindered by the limited diffusion of oxygen within the
ice matrix at 10 K. This reduced mobility could explain why
the formation of secondary photoproducts saturates within 90
min. The concentration of three or fewer atom photoproducts
keeps increasing until 150 min due to the availability of O and
NO radicals in close proximity. It is worth noting that although

Figure 3. RIS mass spectra obtained after 60 min of VUV irradiation of amorphous N2O ice. Mass spectrum of the irradiated ice was obtained by
colliding the sample with 60 eV Cs+ ions at 10 K. All the RIS photoproducts have been assigned, as listed in the table on the right.
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photoinduced electrons may participate in this photochemis-
try, their impact is likely to be minimal due to multilayer ice, as
electron penetration is confined to a depth of only 2 to 5
ML.53−56

While RAIRS primarily analyses the bulk properties of the
ice film, SIMS is capable of probing the topmost monolayer of
the ice. To study the surface photochemistry, we irradiated
N2O ice for 1 h and subsequently used SIMS to analyze the
photoirradiated surface, identifying the molecules present on
the surface. RIS with Cs+ was employed, wherein Cs+ ions
form ionic clusters with neutral molecules on the ice surface,
which are subsequently accelerated to the quadrupole mass
spectrometer. Figure 3 shows the RIS spectra before and after
irradiation. Before photoirradiation, five molecular cluster ion
peaks were observed: m/z = 151 (CsH2O+), m/z = 169
[Cs(H2O)2+], m/z = 179 (CsN2O+), m/z = 195 [Cs(H2O)-
(N2O)+], m/z = 221 [Cs(N2O)2+], and m/z = 239
[Cs(N2O)2(H2O)+]. Here, we note that the mass peaks for
water molecules are attributed to the background deposition of
water at 10 K during the experiment. Although the residual
water was present only in trace amounts and did not
significantly affect the photochemistry, the high dipole
moment of H2O resulted in high peak intensity for water in
the RIS analysis. The extreme surface sensitivity of Cs+
scattering is another reason for its high intensity.

After 1 h of irradiation, five new peaks emerged,
corresponding to the Cs+ adducts of N2 (m/z = 161 and
189), NO (m/z = 163), NO + H2O (m/z = 181), N2O3 (m/z
= 209), and (N2O)2/N2O4 (m/z = 225). We did not observe
any peaks for N2O5 and N2O2. Among the photoproducts, the
intensity was generally low except for N2, which suggests that
reaction pathway 1 is the major dissociation channel that was
not observed by IR spectroscopy. Here, we note that only 1 h
irradiation was carried out to avoid more residual deposition of
water, which can potentially affect the experiment.

For further evaluation, we conducted a temperature-
programmed desorption mass spectrometry (TPD-MS) study
of photoirradiated N2O. In this experiment, N2O was
irradiated for 2 h at 10 K, followed by annealing of the
photoproduced ice mixture up to 200 K at a rate of 10 K/min,
while monitoring the m/z values of 44, 32, 30, and 46 (Figure
4). This allows us to understand how molecules form in the
solid phase and transition to the gas phase during warming. We
assigned m/z 44 to N2O, which desorbs ∼80 K, consistent
with its typical desorption temperature (Figure S5). The m/z
32 signal was attributed to O3, with contributions from O2.
The desorption of O3/O2 started at 20 K and was completed at
80 K. This extended desorption range can be explained by the
dissociation of O3 and the formation of O2 during thermal
annealing, which has a lower desorption temperature. The m/z

Figure 4. TPD-MS spectra of photo irradiated 150 ML of N2O ice. Sublimation profiles using integrated ion counts at (a) m/z = 44, in (b) m/z =
32, in (c) m/z = 30 and (d) m/z = 46 are plotted.
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30 signal can be attributed to various photoinduced products
such as NO2, N2O5, N2O3, N2O2, and N2O4. This study
provides valuable insights into the desorption behavior of
photoproducts and their transition from solid to gaseous phase
under cryogenic conditions.
Comparative Analysis of Radical Diffusion and

Photoproduct Formation. At 10 K, the diffusion and
mobility of the reactive intermediates are minimized,
potentially arresting further reactions. To examine this theory,
we annealed the 4 h photoirradiated sample to 90 K and
collected temperature-dependent RAIR spectra (Figure 5).
Interestingly, during thermal annealing of photoirradiated N2O
ice, we observed a significant increase in NO and N2O3 (Figure
5b,c) alongside a reduction in NO2 and O3 (Figure 5c,d).
Additionally, a decrease in peak intensity in the ν3 mode of
N2O was also observed (Figure 5a), which is attributed to the
dissociation of N2O by reacting with reactive diffused oxygen
radicals (reaction paths 3, 4, 8, 9, and 14). Increase in the
formation of more NO can be explained by the reaction path 3,
where N2O is combined with O to form two NO. Desorption
of N2O is unlikely here, as pure N2O only starts desorbing after
80 K (Figure S5).

The increased formation of N2O3 molecules during thermal
annealing of photoirradiated N2O ice indicates a reaction
pathway where NO2 combines with O radicals. The availability
of oxygen and NO radicals, which become mobile as the

temperature increases, leads to more reaction products.
Notably, we did not calculate the column density of any
molecules because of the significant band overlap among N−O
bond-bearing species. In the equation for calculating column
density from band area, the band area and column density are
directly proportional, assuming other factors remain constant.

To gain a deeper understanding of the trapping of
photoproduced intermediates at 10 K and the subsequent
increase in molecular mobility of radicals at higher temper-
atures, we carried out photoirradiation at 50 K. We calculated
the abundance of photoproducts and compared them with
those produced at 10 K (Figure 6). Figure S6 shows the time-
dependent formation of photoproducts at 50 K. At this
temperature, the abundance of NO2 and O3 is very low
compared to the larger photoproducts such as N2O3, N2O5, c/
t-N2O2, and N2O4 (Figure S6). The band area of photo-
produced O3, and NO2 start to decrease after 50 min, while
N2O2/N2O4 and N2O5 begin to decrease after 150 min while
N2O3 band area does not decrease until 240 min (Figure S7).
In the case of O3, the reduced band area can be attributed to
the desorption (Figure 4b) and dissociation followed by
recombination with N2O (reaction paths 9 and 14) in the ice
matrix. A decrease in the band area of NO2 after 50 min can be
attributed to the dissociation of NO2 and recombination with
other molecules to produce secondary heavy molecules
(reaction paths 12,13 and 14). Similarly, the decrease in the

Figure 5. Temperature-dependent RAIR spectra of 4 h photoirradiated N2O ice. Major IR bands are shown for N2O, NO, NO2, N2O2, N2O3,
N2O4, O3. 150 ML of N2O ice was photoirradiated for 4 h, then annealed to 90 K with a heating rate of 2 K min−1.
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band area for N2O5 and N2O2/N2O4 can be attributed to
dissociation due to intense VUV irradiation.

Figure 6 compares the abundance of photoproducts
produced after 4 h of photoirradiation at 10 K, and 50 K. It
shows that the earlier photoproducts, O3 and NO2 are
relatively higher in abundance at 10 K, while the secondary
photoproducts, N2O3, N2O2/N2O4, and N2O5 are more
abundant at 50 K. This comparison clearly shows a selective
difference in the photoproduct concentration at two different
temperatures. Importantly, the crystalline nature of N2O ice at
50 K (Figure S8) does not contribute to this selective
photoproduct formation. To substantiate this, we conducted a
control experiment in which N2O ice was first crystallized by
annealing it to 50 K. Subsequently the sample was cooled to 10
K, and irradiated for 4 h. The resulting photoproducts were
similar to those observed at 10 K (Figure S9), clearly
indicating that the hindered diffusion of radicals at lower
temperatures limits the formation of secondary photoproducts.
Thus, we conclude that the diffusion of reactive radicals at
higher temperatures plays a key role in selectively enhancing
the concentration of secondary photoproducts.

■ CONCLUSIONS
This study demonstrated that VUV photolysis of N2O
generates a range of photoproducts, including O3, NO, NO2,
N2O2, N2O3, N2O4, and N2O5, which were characterized using
RAIRS, SIMS and TPD-MS. Thermal annealing of the
photoirradiated N2O ice showed an increase in NO and
N2O3 and a decrease in NO2 and O3, indicating that thermal
diffusion of reactive intermediates, which are majorly reactive
oxygen species (O and O3) continue to drive the reactions.
Experiments conducted at 10 and 50 K revealed that three
atom photoproducts (O3 and NO2) dominate at 10 K, while

four or more atom photoproducts (N2O2, N2O3, N2O4, and
N2O5) are prevalent at 50 K. This behavior is attributed to the
restricted diffusion of radicals at 10 K, which limits radical−
radical reactions leading to primary products, whereas higher
temperatures promote greater diffusion and recombination,
leading to the formation of heavier photoproducts. These
findings highlight the crucial role of diffusion restrictions and
thermodynamic stability in the formation of photoproducts in
icy matrices.
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