Supporting Information

Stable Dimer Intermediates During Intercluster Reactions of Atomically Precise Nanoclusters

Swetashree Acharya,^a Jayoti Roy,^a Diptendu Roy,^c Biswarup Pathak^{*c} and Thalappil Pradeep^{*a,b}

^aDST Unit of Nanoscience (DSTUNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, IIT Madras, India

^bInternational Centre for Clean Water, IIT Madras Research Park, Chennai 600113, India.

^cDepartment of Chemistry, IIT Indore, India

E-mail: biswarup@iiti.ac.in

E-mail: pradeep@iitm.ac.in

This Supporting Information includes:

Figures S1-S30

Tables S1-S3

Table of Contents

Sl. No.	Description	Page number
1	Instrumentation	S4
Figure S1	UV/vis and MS characterization of all the M@I ^{p-} NCs used for the reactions	S5
Figure S2	UV/vis and MS characterization of all the M@II ^{q-} NCs used for the reactions	S6
Figure S3	Detailed MS study for reaction of Ag@I ³⁻ and Ag@II ⁻	S7
Figure S4	Detailed MS study for reaction of Ag@I ³⁻ and Au@II ⁻	S7
Figure S5	Detailed MS study for reaction of Ag@I ³⁻ and Pd@II ²⁻	S8
Figure S6	Detailed MS study for reaction of Ag@I ³⁻ and Pt@II ²⁻	S8

Figure S7	(A) MS and (B) arrival time distribution for the dimeric	S9
	species Ag@III ³⁻ at with probe distance variation	
Figure S8	Time dependent UV/vis spectrum for the reaction	S10
	progress of Ag@I ³⁻ with M@II ^{q-}	
Figure S9	Time dependent MS spectra to check stability of the	S11
	dimer Ag@III ³⁻	
Figure S10	Time dependent MS spectra to check stability of the	S11
	dimer Au@III ³⁻	
Figure S11	Time dependent MS spectra to check stability of the	S12
	dimer Pd@IV ³⁻	
Figure S12	Time dependent MS spectra to check stability of the	S12
	dimer Pt@IV ³⁻	
Figure S13	Time dependent MS spectra for the dimer Au@III ³⁻ with	S13
	heating	
Figure S14	Time dependent MS spectra for the dimer Au@III ³⁻ with	S13
	sonication	
Figure S15	Time dependent MS spectra for the dimer Au@III ³⁻ by	S14
	varying parent NCs concentration	
Figure S16	Detailed MS fragmentation of Ag@III ³⁻	S15
Figure S17	Detailed MS fragmentation of Au@III ³⁻	S16
Figure S18	Detailed MS fragmentation of Pd@IV ³⁻	S17
Figure S19	Detailed MS fragmentation of Pt@IV ³⁻	S18
Figure S20	Expanded MS in the fragmentation of Ag@III ³⁻ ,	S19
	confirming reappearance of $Ag@I^{3-}$ as the result of	
	fragmentation	
Figure S21	Expanded MS in the fragmentation of Au@III ³⁻ ,	S19
	confirming reappearance of $Ag@I^{3-}$ as the result of	
	fragmentation	
Figure S22	Expanded MS in the fragmentation of Pd@IV ³⁻ ,	S20
	confirming reappearance of $Ag@I^{3-}$ as the result of	
	fragmentation	

Figure S23	Expanded MS in the fragmentation of Pt@IV ³⁻ ,	S20
	confirming reappearance of $Ag@I^{3-}$ as the result of	
	fragmentation	
Figure S24	Comparison of the fragmentation pattern of Au@III ³⁻	S21
	with the fragmentation pattern of parent Au@II ⁻	
Figure S25	Comparison of the fragmentation pattern of Pd@IV ³⁻	S22
	with the fragmentation pattern of parent Pd@II ²⁻	
Figure S26	Comparison of the fragmentation pattern of Pt@IV ³⁻	S22
	with the fragmentation pattern of parent Pt@II ²⁻	
Figure S27	Representation of the interaction between Ag@I and	S23
	Ag@II NCs involving the removal of two types of	
	AgL' ₂ units from the Ag@II NC	
Table S1	Comparison of energy of the interaction between both	S23
	NCs by removing two types of AgL' ₂ units from the	
	MAg ₂₄ L' ₁₈ NC	
Figure S28	Representation of the path for forming the dimer	S24
	structure	
Table S2	DFT optimized energies for the stable dimers formed	S24
Table S3	Average distance of Ag from the centre in the two NCs	S25
	forming dimers	
Figure S29	Detailed MS study for reaction of Au@I ³⁻ and Ag@II ⁻	S25
Figure S30	Detailed MS study for reaction of Pd@I ⁴⁻ and Ag@II ⁻	S26
Figure S31	Detailed MS study for reaction of Pt@I ⁴⁻ and Ag@II ⁻	S26
Figure S32	Detailed MS study for reaction of Au@I ³⁻ and Au@II ⁻	S27

1. Instrumentation:

1. (i) UV-vis absorption spectroscopy

Optical absorption spectra of samples were obtained using a PerkinElmer Lambda 365 UV-Vis spectrometer. Perkin Elmer Lambda 365 UV/vis spectrometer have a bandpass filter of 1 nm which is used to measure solution phase absorbance in the wavelength range from 200 nm to 1100 nm.

1. (ii) Mass Spectrometry

Electrospray ionization mass spectrometry (ESI MS) was conducted using a Waters Synapt G2-Si high-resolution mass spectrometer. The spectrometer consists of an electrospray ionization source, quadrupole ion guide, ion mobility separation cell, and TOF analyzer. Nitrogen was used as a nebulizer gas and all samples were measured in negative mode by dissolving around 1mM purified NCs in acetonitrile solvent. The following optimized conditions were used for the measurement of samples: Flow rate 10 μ L/min, capillary voltage 3 kV, source temperature 100 °C, desolvation temperature 150 °C with desolvation gas flow rate 400 L/h.

Figure S1. In each row left is UV/vis and right is MS characterisation of (A) $Ag@I^{3-}$, (B) $Au@I^{3-}$, (C) $Pd@I^{4-}$ and (D) $Pt@I^{4-}$. In the middle, the crystal structures of the NCs are shown. Inset of MS is the comparison of isotopic distribution of the major peak in each spectrum.

Figure S2. UV/vis and MS characterisation of (A) Ag@II⁻, (B) Au@II⁻, (C) Pd@II²⁻ and (D) Pt@II²⁻. In the middle crystal structure of each NC has been shown. Inset of MS is the isotopic distribution matching for the parent NC peak.

Figure S3. ESI MS study of (A) $Ag@I^{3-}$, (B) $Ag@II^{-}$ and (C) the reaction mixture showing dimeric species observed during the reaction. (D) Expanded region from m/z 3000 to m/z 3500 showing all dimeric species.

Figure S4. ESI MS study of (A) $Ag@I^{3-}$, (B) $Au@II^{-}$ and (C) the reaction mixture showing dimeric species observed during the reaction. (D) Expanded region from m/z 3000 to m/z 3500 showing all dimeric species.

Figure S5. ESI MS study of (A) $Ag@I^{3-}$, (B) $Pd@II^{2-}$ and (C) the reaction mixture showing dimeric species observed during the reaction. (D) Expanded region from m/z 3000 to m/z 3500 showing all dimeric species.

Figure S6. ESI MS study of (A) $Ag@I^{3-}$, (B) $Pt@II^{2-}$ and (C) the reaction mixture showing dimeric species observed during the reaction. (D) Expanded region from m/z 3000 to m/z 3500 showing all dimeric species.

Figure S7. Mass spectrum (A) and arrival time distribution (B) for the dimeric species Ag@III³⁻ at with probe distance variation.

Figure S8. Time dependent UV/vis spectrum for the reaction progress of Ag@I³⁻ with (A) Ag@II⁻, (B) Au@II⁻, (C) Pd@II²⁻, and (D) Pt@II²⁻ NCs.

Figure S9. Time dependent mass spectra for the formed dimer between reaction of $Ag@I^{3-}$ and $Ag@II^{-}$, showing the stability of the dimeric species up to 48 hours.

Figure S10. Time dependent mass spectra for the formed dimer between $Ag@I^{3-}$ and $Au@II^{-}$, showing the stability of the dimeric species up to 120 minutes.

Figure S11. Time dependent mass spectra for the formed dimer between $Ag@I^{3-}$ and $Pd@II^{2-}$, showing the stability of the dimeric species up to 120 minutes.

Figure S12. Time dependent mass spectra for the formed dimer between $Ag@I^{3-}$ and $Pt@II^{2-}$, showing the stability of the dimeric species up to 120 minutes.

Figure S13. Time dependent MS study of the effect of heating at 40 °C on the reaction between $Ag@I^{3-}$ and $Au@II^{-}$ up to 120 minutes.

Figure S14. Time dependent MS study of the effect of sonication on the reaction between $Ag@I^{3-}$ and $Au@II^{-}$ up to 60 minutes.

Figure S15. Time dependent MS study of the reaction between $Ag@I^{3-}$ and $Au@II^{-}$ in (A) 1:5 and (B) 5:1 ratio.

Figure S16. Detailed MS fragmentation of Ag@III³⁻ for mass range (A) 1500 to 5000 and (B) 300 to 1500 with increasing CE from 0 to 60.

Figure S17. Detailed MS fragmentation of Au@III³⁻ for mass range (A) 1500 to 5000 and (B) 300 to 1500 with increasing CE from 0 to 60.

Figure S18. Detailed MS fragmentation of Pd@IV³⁻ for mass range (A) 1500 to 5000 and (B) 300 to 1500 with increasing CE from 0 to 60.

Figure S19. Detailed MS fragmentation of Pt@IV³⁻ for mass range (A) 1500 to 5000 and (B) 300 to 1500 with increasing CE from 0 to 60.

Figure S20. Expanded mass spectra for the fragmentation of Ag@III³⁻, which confirms the reappearance of Ag@I³⁻ at CE 50 as the result of fragmentation of the dimeric species.

Figure S21. Expanded mass spectra for the fragmentation of Au@III³⁻, which confirms the reappearance of $Ag@I^{3-}$ at CE 50 as the result of fragmentation of the dimeric species.

Figure S22. Expanded mass spectra in the fragmentation of $Pd@IV^{3-}$, which confirms the reappearance of $Ag@I^{3-}$ at CE 50 as the result of fragmentation of the dimeric species.

Figure S23. Expanded mass spectra in the fragmentation of $Pt@IV^{3-}$, which confirms the reappearance of $Ag@I^{3-}$ at CE 50 as the result of fragmentation of the dimeric species.

Figure S24. Fragmentation pattern of (A) the parent Au@II⁻ and (B) the dimer Au@III³⁻, having distinctly different fragmentation patterns.

Figure S25. Fragmentation pattern of (A) the parent $Pd@II^{2-}$ and (B) the dimer $Pd@IV^{3-}$, having similar fragmentation patterns.

Figure S26. Fragmentation pattern of (A) the parent Pt@II²⁻ and (B) the dimer Pt@IV³⁻, having similar fragmentation patterns.

Figure S27. Representation of the interaction between Ag@I and Ag@II NCs involving the removal of two types (cis and trans, see main text) of AgL'₂ units from the Ag@II NC, leading to the dimer. The green highlighted atoms are removed from the Ag@II NC to obtain the dimer structure.

Table S1. Comparison of energy for the optimised structures of the NC interactions formed with two different types of AgL'₂ unit removal.

Optimised structure	Energy (in eV)		
Ag@III ³⁻ (cis AgL' ₂ removed)	-2840.33		
Ag@III ³⁻ (trans AgL' ₂ removed)	-2840.63		

Figure S28. Representation of the path for forming the dimer structure. The green highlighted atoms from the Ag@II NC have been removed and the free Ag atoms formed are connected to the green highlighted atoms of Ag@I NC.

Dimer	Energy (eV)	Relative energy (eV)
Ag@III ³⁻	-2844.69	0
Au@III ³⁻	-2845.74	-1.05
Pd@IV ³⁻	-2851.71	0
Pd@IV ³⁻	-2852.06	-0.35

Table S2. DFT optimized energies for the stable dimers formed.

Dimer	Average distance of M-Ag in the MAg24L'18 NCs (Å)		Average distance of Ag-Ag in the Ag29L12 NC (Å)	
	M-Ag	M-Ag	M-Ag	M-Ag
	(Ag ₁₃ core)	(Ag-L' staple)	(Ag ₁₃ core)	(Ag-L' staple)
Ag@III ³⁻	2.86	4.79	2.83	5.44
Au@III ³⁻	2.86	4.79	2.82	5.44
Pd@IV ³⁻	2.82	4.76	2.82	5.44
Pd@IV ³⁻	2.82	4.78	2.82	5.45

Table S3. Comparison of average bond length for doped and non-doped fragments in Au, Pd and Pt-doped NCs.

Figure S29. ESI MS study for (C) the reaction mixture of (A) Au@I³⁻ and (B) Ag@II⁻ showing the formation of similar dimeric species shown in (D) the expanded region from m/z 3000 to m/z 3500.

Figure S30. ESI MS study for (C) the reaction mixture of (A) $Pd@IV^{4-}$ and (B) $Ag@II^{-}$ showing the formation of similar dimeric species shown in (D) the expanded region from m/z 3100 to m/z 3400.

Figure S31. ESI MS study for (C) the reaction mixture of (A) $Pt@IV^{4-}$ and (B) Ag@II⁻ showing the formation of similar dimeric species shown in (D) the expanded region from m/z 3000 to m/z 3500.

Figure S32. ESI MS study for (C) the reaction mixture of (A) $Au@I^{3-}$ and (B) $Au@II^{-}$ showing the formation of similar dimeric species shown in (D) the expanded region from m/z 3100 to m/z 3400.