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Videos 

Video S1- CO2 hydrates morphology in pure water  

Video S2- CO2 hydrates morphology in dry water  

Video S3- CO2 hydrates morphology in dry water + 500 ppm L-trp  

Video S4- CO2 hydrates morphology in dry water + 1000 ppm L-trp  
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Figure S1. Photograph showing the transfer of dry water (DW) from a blender jar to a storage bottle. 
DW was prepared by blending 95 g of deionized water with 5 g of nanosilica particles at ~24,000 rpm 
for 90 seconds (in three 30-second bursts). The resulting free-flowing white powder transferred easily 
without leaving residue. 
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Figure S2. Experimental setup for studying CO2 hydrate formation kinetics and morphology, as well 
as for sample preparation for PXRD analysis. The setup includes a high-pressure crystallizer chamber, 
external refrigerator, gas inlet, and data acquisition system.  
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Figure S3. Schematic of the in situ Raman setup coupled with high-pressure reactor. The setup consists 
of a high-pressure crystallizer chamber, Raman spectrometer, external refrigerator, gas inlet, and data 
acquisition systems. 
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Calculation of the Lattice Parameter of the CO2 (sI) Hydrate Using the Observed PXRD 
Data 

Two equations were employed to determine the lattice parameter (a) of DW-CO2 (sI) hydrate. 

The procedure is outlined as follows: 

Initially, eqn. (S1) utilizes Bragg’s law to calculate “d,” which denotes the interplanar spacing 

of the crystal: 

𝑛λ = 2𝑑 sin𝛩                                                                                                                        (S1) 

Here, "λ” denotes the wavelength of the incident X-ray (1.542 Å in this case), and “𝛩” is the 

incident angle (the angle between the incident ray and the scattering plane) obtained from the 

PXRD peak position. “n” is set to 1 for the first order of diffraction. 

Subsequently, the p-XRD pattern is indexed against the standard sI hydrate PXRD pattern.1, 2 

At least three peaks with known Miller Indices (“hkl”) are selected. For cubic crystals, the 

interplanar spacing “d” between adjacent (hkl) lattice planes is described by eqn. (S2): 

ଵ

ௗమ
=

మାమାమ

మ
                                                                                                                         (S2) 

Given the other known parameters, solving eqn. (S2) yields the lattice parameter “a” for the 

cubic unit cell of the sI hydrate. 
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Figure S4. Time-dependent in situ Raman spectra for CO2 hydrate formation in (a, b) pure water, (c, d) 
DW, and (e, f) DW + 500 ppm L-trp. Here, the first and second columns present Raman spectra for the 
CO2 Fermi dyad, and O-H stretching bands, respectively. In all cases, CO2 hydrate formation was 

achieved at 3.5 MPa and 274.65 K. While the presence of two Fermi dyad peaks at ~1380.3 and 
1275.3 cm-1 confirms the formation of CO2 hydrates, the O-H stretching suggests that the water 
molecules are forming the hydrate cages. 
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Figure S5. (a) PXRD pattern of the (i) hydrophobic nanosilica, and (ii) DW-CO2 hydrate formed at 3.5 

MPa and 274.65 K (initial conditions). A broad PXRD pattern in the 2θ range of 10-15° corresponding 
to silica particles can be seen in both systems. (b) In situ Raman spectra before and after DW-CO2 
hydrate formation in the Si-O-Si stretching region of silica. The reduced peak intensity after hydrate 
formation suggests that a small fraction of CO2 hydrates formed above the silica shell. 
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Figure S6. Changes in the P-T with respect to time during CO2 hydrate formation in (a) pure water, (b) 
DW without L-trp, (c) DW with 500 ppm L-trp, and (d) DW with 100 ppm L-trp at 3.5 MPa. The onset 
of hydrate formation is realized by observing a sudden drop in pressure and an increase in temperature. 
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