Understanding the Kinetics of $CO₂$ Hydrate Formation in Dry Water for Carbon Capture and Storage: X-Ray Diffraction and In Situ Raman **Studies**

Gaurav Vishwakarma^{1,2,#}, Vikas Dhamu^{1,#}, M. Fahed Qureshi¹, Gaurav Bhattacharjee¹,

Thalappil Pradeep^{2,3*} and Prayeen Linga^{1*}

¹Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117580 

²DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

³International Centre for Clean Water, IIT Madras Research Park, Chennai 600113, India

*Corresponding authors

pradeep@iitm.ac.in, praveen.linga@nus.edu.sg

#G.V. and V.D. contributed equally.

Morphology Videos S1-S4

Figures S1-S6 (pages S2-S8)

Calculation of the Lattice Parameter (S5)

References (page S9)

Videos

Video S1- CO2 hydrates morphology in pure water

Video S2- CO2 hydrates morphology in dry water

Video S3- $CO₂$ hydrates morphology in dry water $+ 500$ ppm L-trp

Video S4- $CO₂$ hydrates morphology in dry water $+1000$ ppm L-trp

Figure S1. Photograph showing the transfer of dry water (DW) from a blender jar to a storage bottle. DW was prepared by blending 95 g of deionized water with 5 g of nanosilica particles at \sim 24,000 rpm for 90 seconds (in three 30-second bursts). The resulting free-flowing white powder transferred easily without leaving residue.

Figure S2. Experimental setup for studying CO₂ hydrate formation kinetics and morphology, as well as for sample preparation for PXRD analysis. The setup includes a high-pressure crystallizer chamber, external refrigerator, gas inlet, and data acquisition system.

Figure S3. Schematic of the in situ Raman setup coupled with high-pressure reactor. The setup consists of a high-pressure crystallizer chamber, Raman spectrometer, external refrigerator, gas inlet, and data acquisition systems.

Calculation of the Lattice Parameter of the CO2 (sI) Hydrate Using the Observed PXRD Data

Two equations were employed to determine the lattice parameter (a) of DW - CO_2 (sI) hydrate. The procedure is outlined as follows:

Initially, eqn. (S1) utilizes Bragg's law to calculate "d," which denotes the interplanar spacing of the crystal:

$$
n\lambda = 2d \sin \theta \tag{S1}
$$

Here, " λ " denotes the wavelength of the incident X-ray (1.542 Å in this case), and " θ " is the incident angle (the angle between the incident ray and the scattering plane) obtained from the PXRD peak position. "*n*" is set to 1 for the first order of diffraction.

Subsequently, the p-XRD pattern is indexed against the standard sI hydrate PXRD pattern.^{1, 2} At least three peaks with known Miller Indices ("hkl") are selected. For cubic crystals, the interplanar spacing "d" between adjacent (hkl) lattice planes is described by eqn. (S2):

$$
\frac{1}{a^2} = \frac{h^2 + k^2 + l^2}{a^2}
$$
(S2)

Given the other known parameters, solving eqn. $(S2)$ yields the lattice parameter "a" for the cubic unit cell of the sI hydrate.

Figure S4. Time-dependent in situ Raman spectra for $CO₂$ hydrate formation in (a, b) pure water, (c, d) DW, and (e, f) DW + 500 ppm L-trp. Here, the first and second columns present Raman spectra for the $CO₂$ Fermi dyad, and O-H stretching bands, respectively. In all cases, $CO₂$ hydrate formation was achieved at 3.5 MPa and 274.65 K. While the presence of two Fermi dyad peaks at ~1380.3 and 1275.3 cm⁻¹ confirms the formation of $CO₂$ hydrates, the O-H stretching suggests that the water molecules are forming the hydrate cages.

Figure S5. (a) PXRD pattern of the (i) hydrophobic nanosilica, and (ii) DW-CO₂ hydrate formed at 3.5 MPa and 274.65 K (initial conditions). A broad PXRD pattern in the 2θ range of 10-15[°] corresponding to silica particles can be seen in both systems. (b) In situ Raman spectra before and after DW - $CO₂$ hydrate formation in the Si-O-Si stretching region of silica. The reduced peak intensity after hydrate formation suggests that a small fraction of $CO₂$ hydrates formed above the silica shell.

Figure S6. Changes in the $P-T$ with respect to time during $CO₂$ hydrate formation in (a) pure water, (b) DW without L-trp, (c) DW with 500 ppm L-trp, and (d) DW with 100 ppm L-trp at 3.5 MPa. The onset of hydrate formation is realized by observing a sudden drop in pressure and an increase in temperature.

References

(1) Kumar, A.; Daraboina, N.; Linga, P.; Kumar, R.; Ripmeester, J. A. Experimental study on hydrate structure transition using an in situ high-pressure powder X-ray diffractometer: application in CO2 capture. ACS Sustainable Chemistry & Engineering 2022, 10 (35), 11473-11482.

(2) Jin, Y.; Kida, M.; Nagao, J. Clathrate Hydrates Coexisting Thiazole: Two Roles of Structure II Hydrate Former and Structure I Thermodynamic Inhibitor. Energy & Fuels 2023, 37 (3), 2467-2474.