Supplementary Information

Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties

Vivek Yadav¹, Arijit Jana¹, Swetashree Acharya¹, Sami Malola², Harshita Nagar¹, Ankit Sharma³, Amoghavarsha R. Kini¹, Sudhadevi Antharjanam⁴, Jan Machacek⁵, Kumaran Nair Valsala Devi Adarsh^{* 3}, Tomas Base^{* 5}, Hannu Häkkinen^{*2}, and Thalappil Pradeep^{* 1}

1 DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai – 600036, India

2 Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014 Jyväskylä, Finland

3 Department of Physics, Indian Institute of Science Education, and Research Bhopal, Bhopal-462066, India

4 Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology, Madras, Chennai – 600036, India

5 Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, 1001 Husinec-Rez, 25068, Czech Republic

*Corresponding authors email: pradeep@iitm.ac.in, hannu.j.hakkinen@jyu.fi, tbase@iic.acs.cz, adarsh@iiserb.ac.in

Table of Contents

Supplementary Figures	S2-S42
Supplementary Tables	S43-S66

Supplementary Figures

Supplementary Fig. 1 | a Mass Spectrum of the initial synthesis trial for incorporating Cu in Ag₁₇ NC showing a mixture of products as Ag_{17-x}Cu_x (x= 0-4). b Exact matching of the isotopic distributions of the experimental (dark blue) and simulated spectra (light green) of Ag₁₄Cu₃, Ag₁₅Cu₂ and Ag₁₆Cu NCs.

Supplementary Fig. 2 | Mass spectrum of AuAg₁₂Cu₄ showing multiple peaks assigned and their exact matching of the isotopic distributions of the experimental (deep purple) and simulated (cyan) spectra.

Supplementary Fig. 3 | Time dependent UV-Vis absorption spectra of the Ag₁₇, after the addition of NaBH₄ during the synthesis. The cluster Ag₁₇ started forming after 15 h of reaction.

Supplementary Fig. 4 | Time sequence UV-Vis absorption spectra of the AuAg₁₆, after the addition of NaBH₄ during the synthesis. The AuAg₁₆ started forming after 15 h of reaction.

Supplementary Fig. 5 | Time dependent UV-Vis absorption spectra of $Ag_{13}Cu_4$, after the addition of NaBH₄ during the synthesis. The $Ag_{13}Cu_4$ started forming after 12 h of reaction.

Supplementary Fig. 6 | Time sequence UV-Vis absorption spectra of $AuAg_{12}Cu_4$, after the addition of NaBH₄ during the synthesis. The $AuAg_{12}Cu_4$ started forming after 12 h of reaction.

Supplementary Fig. 7 | Photographic images of the different synthetic steps of all the four clusters with and without DPPE. No product was formed without DPPE as a supporting ligand.

Supplementary Fig. 8 | Optical microscopic images of **a** Ag₁₇, (Scale bar: 200 μ m) **b** AuAg₁₆, (Scale bar: 50 μ m) **c** Ag₁₃Cu₄ (Scale bar: 50 μ m) and **d** AuCu₄Ag₁₂ (Scale bar: 50 μ m) single crystal under the polarizer at various rotation. Distinct optical polarization was observed for Ag₁₇, AuAg₁₆ and Ag₁₃Cu₄ cluster crystals. Such polarization was absent for trimetallic AuCu₄Ag₁₂ cluster.

Supplementary Fig. 9 | FESEM images of the crystals and EDS mapping of Ag_{17} . a The EDS spectrum indicates the presence of respective elements. b The FESEM image of a single crystal and the collected EDS elemental mapping of the same crystal, showing Ag, S, C and B elements.

Supplementary Fig. 10 | **FESEM images of the crystals and EDS mapping of AuAg**₁₆. **a** The EDS spectrum indicates the presence of respective elements. **b** The FESEM image of a single crystal and the collected EDS elemental mapping of the same crystal, showing Ag, Au, S, P, C and B elements.

Supplementary Fig. 11 | FESEM images of the crystals and EDS mapping of $Ag_{13}Cu_4$. a The EDS spectrum indicates the presence of respective elements. b The FESEM image of a single crystal and the collected EDS elemental mapping of the same crystal, showing Ag, Cu, S, P, C and B elements.

Supplementary Fig. 12 | **FESEM images of the crystals and EDS mapping of AuAg**₁₂**Cu**₄**. a** The EDS spectrum indicates the presence of respective elements. **b** The FESEM image of a single crystal and the collected EDS elemental mapping of the same crystal, showing Ag, Cu, Au, S, C and B elements.

Supplementary Fig. 13 | Structural composition of the Ag₁₇. a Full structure of Ag₁₇ shows the 17-silver core binded with sulphur of o_1 -CBT (Hydrogen has been removed for clarity). b Composition of silver core with central atom (Ag) covered with an icosahedral (Ag₁₂) capped with tetrahedral (Ag₄) for overall core to become Ag@Ag₁₂@Ag₄. Color codes: metallic gray: silver, cyan: sulphur, green: boron and dark grey: carbon.

a	b b b b b b b b b b b b b b b b b b b		c c		d	
e		f	n		g	m. /0
Nanocluster	Average distance (Å) between central atom to Icosahedral atoms (k)	Average distance (Å) among the bonds of Icosahedral atoms ()	Average distance (Å) between capped tetrahedral metal atom to Icosahedral atoms (m)	Average distance (Å) among capped tetrahedral atoms (n)	Average distance (Å) between Sulphur of ligand to Icosahedral atoms ()	Average distance (Å) between Sulphur of ligand to capped tetrahedral atoms (
Ag ₁₇	2.792	2.938	3.061	7.750	2.492	2.498
AuAg ₁₆	2.785	2.931	3.054	7.776	2.481	2.548
Ag ₁₃ Cu ₄	2.785	2.930	2.986	7.611	2.493	2.277
AuAg ₁₂ Cu ₄	2.759	2.902	2.958	7.580	2.491	2.186

Supplementary Fig. 14 | Metal sulphur core of a Ag_{17} , b $AuAg_{16}$, c $Ag_{13}Cu_4$ and d $AuAg_{12}Cu_4$ shows the site-specific doping of Au and Cu in the desired NCs. e,f shows the inner icosahedral core and the capped tetrahedral units i.e. M_{13} having two different metal sites (Central M_1 and icosahedral M_{12}) and M_4 respectively. g shows the binding of S with the metal core. Table shows all the average bond distances associated with the NCs.

Supplementary Fig. 15 | Structural comparison of different doped systems of M_{20} and M_{21} with M_{17} systems showing site specificity of the M_{17} system. Structures a,b represent the similar icosahedra-centred structures of Ag_{17} and $[Ag_{20}{Se_2P(O^iPr)_2}_{12}]$. Structures c,d represent $AuAg_{16}$ and $[AuAg_{20}{Se_2P(OEt)_2}_{12}]^+$ clusters where the incorporation of Au is possible with the selenium based ligand, increasing the nuclearity to M_{21} . Structures e,f show $Ag_{13}Cu_4$ and $[Cu_{3.5}Ag_{16.5}{S_2P(O^nPr)_2}_{12}]$ clusters where the position of Cu is fixed at the four peripheral sites for $Ag_{13}Cu_4$ whereas it is randomly distributed at the capping positions for $[Cu_{3.5}Ag_{16.5}{S_2P(O^nPr)_2}_{12}]$. Structures g,h show the trimetallic $AuAg_{12}Cu_4$ and $[Cu_{2.5}AuAg_{16.5}{S_2P(O^nPr)_2}_{12}]$ clusters where the position of Cu is not definite for the M_{20} system.

Supplementary Fig. 16 | Structure of **a** AuAg₁₆ and **b** Ag₁₃Cu₄ show $[Au(DPPE)_2]^+$ and $[Cu(DPPE)_2]^+$ units surrounding the AuAg₁₆ and Ag₁₃Cu₄ NC respectively; **c,d** show the distance of $[Au(DPPE)_2]^+$ and $[Cu(DPPE)_2]^+$ units from the centre of AuAg₁₆ and Ag₁₃Cu₄ respectively.

Supplementary Fig. 17 | Intermolecular interaction such as CH- π , BH- π , B-CH, BH-CH, CH-CH, B- π of **a** AuAg₁₆ with [Au(DPPE)₂]⁺ and **b** Ag₁₃Cu₄ with [Cu(DPPE)₂]⁺ units.

Supplementary Fig. 18 | Extended molecular packing of **a** Ag₁₇, **b** AuAg₁₆ along with $[Au(DPPE)_2]^+$ units, **c** Ag₁₃Cu₄ along with $[Cu(DPPE)_2]^+$ units and **d** AuAg₁₂Cu₄ NCs.

Supplementary Fig. 19 | The space-filled molecular packing of $AuAg_{12}Cu_4$, highlighting its (011) plane, reveals packing pores represented by saffron circles. However, due to the unresolved counter ions and the diffuse electron densities likely to be originating from solvent molecules (which were squeezed out during analysis), the void size (13.818 Å) and porosity of the region marked by saffron circles remain undefined.

Supplementary Fig. 20 | a Collision energy dependent MS/MS fragmentation spectra of Ag₁₇ (L: o_1 -CBT). Fragmentation studies were performed upon selecting the molecular ion peak at 1312.42, having a charge state of 3-. **b,c** Comparative isotopic distribution of the experimental and simulated (Cyan) peaks for **b** [AgL₂]⁻ and **c** [Ag₁₆L₁₀]²⁻ fragments.

Supplementary Fig. 21 | **a** Collision energy dependent MS/MS fragmentation spectra of AuAg₁₆ (L: o_1 -CBT). Fragmentation studies were performed upon selecting the molecular ion peak at 1342.11, having a charge state of 3-. **b**,**c** Comparative isotopic distribution of the experimental and simulated (Cyan) peaks for **b** [AgL₂]⁻ and **c** [AuAg₁₅L₁₀]²⁻ fragments.

Supplementary Fig. 22 | **a** Collision energy dependent MS/MS fragmentation spectra of $Ag_{13}Cu_4$ (L: o_1 -CBT). Fragmentation studies were performed upon selecting the molecular ion peak at 1253.46, having a charge state of 3-. **b**,**c** Comparative isotopic distribution of the experimental and simulated (Cyan) peaks for **b** [CuL₂]⁻ and **c** [Ag₁₃Cu₃L₁₀]²⁻ fragments.

Supplementary Fig. 23 | **a** Collision energy dependent MS/MS fragmentation spectra of AuAg₁₂Cu₄ (L: o_1 -CBT). Fragmentation studies were performed upon selecting the molecular ion peak at 1283.15, having a charge state of 3-. **b**,**c** Comparative isotopic distribution of the experimental and simulated (Cyan) peaks for **b** [CuL₂]⁻ and **c** [AuAg₁₂Cu₃L₁₀]²⁻ fragments.

Supplementary Fig. 24 | **a** Positive ion mode ESI-MS spectrum of the as synthesized crude of Ag₁₇, AuAg₁₆, Ag₁₃Cu₄ and AuAg₁₂Cu₄. Ag₁₇, didn't show the any peaks with DPPE whereas AuAg₁₆, showed [Au(DPPE)₂]⁺ peak, Ag₁₃Cu₄ showed [Cu(DPPE)₂]⁺ peak and AuAg₁₂Cu₄ showed both [Au(DPPE)₂]⁺ and [Cu(DPPE)₂]⁺ peaks in the crude sample. **b,c** Comparative isotopic distribution of the experimental and simulated (Cyan) peaks for **b** [Cu(DPPE)₂]⁺ and **c** [Au(DPPE)₂]⁺ peaks.

Supplementary Fig. 25 | Positive ion mode ESI-MS spectrum of different crystals of $AuAg_{12}Cu_4$. ESI-MS of the crystals of $AuAg_{12}Cu_4$ did not show any peaks corresponding to $[Au(DPPE)_2]^+$ and $[Cu(DPPE)_2]^+$ expected at *m/z* 993.24 and 859.20, respectively.

Supplementary Fig. 26 | Time dependent stability UV-Vis absorption spectra of a Ag₁₇, b AuAg₁₆, c Ag₁₃Cu₄ and d AuAg₁₂Cu₄ in DCM solution. During this study, clusters are saved in a closed Eppendorf vial in dark condition at 4 °C.

Supplementary Fig. 27 | Thermal Stability of Ag_{17} NC at different temperatures. Comparative a UV-Vis absorption spectra and b ESI-MS data of Ag_{17} after heating the cluster at different temperatures. After 90 min of heating, the powder sample was dissolved in DCM for UV-Vis and ESI-MS measurements.

Supplementary Fig. 28 | Thermal Stability of AuAg₁₆ NC at different temperatures. Comparative a UV-Vis absorption spectra and b ESI-MS data of AuAg₁₆ after heating the cluster at different temperatures. After 90 min of heating, the powder sample was dissolved in DCM for UV-Vis and ESI-MS measurements.

Supplementary Fig. 29 | Thermal Stability of $Ag_{13}Cu_4$ NC at different temperatures. Comparative a UV-Vis absorption spectra and b ESI-MS data of $Ag_{13}Cu_4$ after heating the cluster at different temperatures. After 90 min of heating, after 90 min of heating, the powder sample was dissolved in DCM for UV-Vis and ESI-MS measurements.

Supplementary Fig. 30 | Thermal Stability of AuAg₁₂Cu₄ NC at different temperatures. Comparative a UV-Vis absorption spectra and b ESI-MS data of AuAg₁₂Cu₄ after heating the cluster at different temperatures. After 90 min of heating, the powder sample was dissolved in DCM for UV-Vis and ESI-MS measurements.

Supplementary Fig. 31 | TG and DTG plots of microcrystalline Ag₁₇ solids.

Supplementary Fig. 32 | TG and DTG plots of microcrystalline AuAg₁₆ solids.

Supplementary Fig. 33 | TG and DTG plots of microcrystalline Ag₁₃Cu₄ solids.

Supplementary Fig. 34 | TG and DTG plots of microcrystalline AuAg₁₂Cu₄ solids.

Supplementary Fig. 35 | XPS survey scan of a Ag₁₇, b AuAg₁₆, c Ag₁₃Cu₄ and d AuAg₁₂Cu₄. Binding energy of the respective elements are marked here.

Supplementary Fig. 36 | Selected scan with respective peak fittings of a Ag_{17} , b $AuAg_{16}$, c $Ag_{13}Cu_4$ and d $AuAg_{12}Cu_4$.

Supplementary Fig. 37 | Selected scan with respective peaks i.e., S 2p, B 1s and C 1s of a Ag₁₇, b AuAg₁₆, c Ag₁₃Cu₄ and d AuAg₁₂Cu₄.

Supplementary Fig. 38 | Combined FT-IR spectra of the *o*₁-CBT ligand, Ag₁₇, AuAg₁₆, Ag₁₃Cu₄ and AuAg₁₂Cu₄.

Supplementary Fig. 39 | Optimized structures and relative energies of cluster when Au is added in all symmetrically different metal atom positions.

Supplementary Fig. 40 | Optimized structures and relative energies of cluster when Cu is added in all symmetrically different metal atom positions.

Supplementary Fig. 41 | DPV studies with Ag₁₇ NC showing the experimental band gap of 2.04 eV.

Supplementary Fig. 42 | Tauc's plots for the energy band gap of the \mathbf{a} Ag₁₇, \mathbf{b} AuAg₁₆, \mathbf{c} Ag₁₃Cu₄ and \mathbf{d} AuAg₁₂Cu₄ nanoclusters.

Supplementary Fig. 43 | Dipole transition contribution maps (DTCMs) showing the strengthening and screening contributions in Kohn-Sham basis for Ag_{17} at the energy of **a** 492 nm **b** 396 nm **c** 322 nm **d** 271 nm absorption peaks.

Supplementary Fig. 44 | Crystallization induced emission (CIE) behavior of a Ag_{17} and b AuAg₁₆. Inset shows the photographs of the respective cluster under UV light in solution and crystals.

Supplementary Fig. 45 | Excitation-dependent emission spectra of Ag₁₃Cu₄ in DCM solution.

Supplementary Fig. 46 | Excitation-dependent emission spectra of AuAg₁₂Cu₄ in DCM solution.

Supplementary Fig. 47 | Photoluminescence emission spectra of a $Ag_{13}Cu_4$ and b trimetallic $AuAg_{12}Cu_4$ crystals. Inset shows the optical micrographs of the respective crystals. Top: daylight, down: UV light. Scale bar 50 μ m.

Supplementary Fig. 48 | Photoluminescence decay profile of AuAg₁₆.

Supplementary Fig. 49 | Photoluminescence emission spectra of Ag₁₃Cu₄ in DCM solution after oxygen and argon bubbling indicating phosphorescence emission originating from triplet state. Excitation wavelength was 412 nm.

Supplementary Fig. 50 | Nanosecond transient absorption decay kinetics for **a** $Ag_{13}Cu_4$ and **b** $AuAg_{12}Cu_4$. The solid line in the figures represents the single exponential fit.

Supplementary Tables

Cluster		Absorption peak positions (nm)					
Ag ₁₇ , exp.	-	400	312	269	241		
Ag ₁₇ , calc.	<mark>492</mark>	<mark>396</mark>	322	<mark>271</mark>	-		
AuAg ₁₆ , exp.	-	385	288	271	-		
AuAg ₁₆ , calc.	<mark>458</mark>	<mark>389</mark>	<mark>328</mark>	<mark>276</mark>	-		
Ag ₁₃ Cu ₄ , exp.	475	400	307	-	-		
Ag ₁₃ Cu ₄ , calc.	<mark>499</mark>	<mark>428</mark>	<mark>320 (364</mark>)	<mark>281</mark>	-		
AuAg ₁₂ Cu ₄ , exp.	-	385	303	265	-		
AuAg ₁₂ Cu ₄ , calc.	<mark>477</mark>	<mark>423</mark>	<mark>317 (356</mark>)	<mark>281</mark>	-		

Supplementary Table 1 | Peak positions of the experimental and calculated absorption spectra. Possible additional non-assigned peaks are given in parenthesis at the next closest assigned peak.

Supplementary Table 2 | Crystallographic information of Ag₁₇, AuAg₁₆, Ag₁₃Cu₄ and AuAg₁₂Cu₄ cluster crystals.

	Ag ₁₇	AuAg ₁₆	Ag ₁₃ Cu ₄	AuAg ₁₂ Cu ₄
Chemical	C ₂₄ H ₁₃₂ Ag ₁₇	C ₁₈₀ H ₂₇₆ Ag ₁₆	C ₁₈₀ H ₂₇₆ Ag ₁₃	$C_{24} H_{132} Ag_{12}$
formula	$B_{120} S_{12}$	$Au_4 \ B_{120} \ P_{12} \ S_{12}$	$B_{120} \ Cu_7 \ P_{12} \ S_{12}$	Au B_{120} Cu ₄ S_{12}
Formula weight	3937.00	7007.34	6340.64	3848.77
Temperature	173(2) K	296(2) K	273(2) K	129(2) K
Crystal system	Orthorhombic	Trigonal	Triclinic	Cubic
Space group	Pbcn	R -3	P-1	F d -3
Crystal Size	0.178 x 0.115 x	0.121 x 0.092 x	0.261 x 0.115 x	0.090 x 0.095 x
(mm ³)	0.078	0.017	0.088	0.075
<i>a</i> (Å)	51.188(2)	30.0358(11)	22.4896(10)	38.364(17)
<i>b</i> (Å)	21.0030(9)	30.0358(11)	23.7297(12)	38.364(17)
<i>c</i> (Å)	33.3626(18)	59.198(4)	30.8515(14)	38.364(17)
α (°)	90	90	94.853(3)	90
β (°)	90	90	94.104(2)	90

γ (°)	90	120	103.94(3)	90
$V(\text{\AA})^3$	35868(2)	46250(5)	15850.2(13)	56464(8)
Ζ	8	6	2	8
Density calc. (mg	1.458	1.510	1.329	0.905
m ⁻³)				
Absorption	15.976 mm ⁻¹	13.055 mm ⁻¹	8.359 mm ⁻¹	8.700 mm ⁻¹
coefficient				
F(000)	14936	20376	6284	14616
Theta range for	1.726 to	1.855 to	2.285 to	1.995 to 65.909°
data collection	51.241°.	44.408°.	66.000°.	
Index ranges	-51<=h<=47,	-21<=h<=25,	-26<=h<=26,	-44<=h<=45,
	-11<=k<=20,	-25<=k<=27,	-28<=k=28,	-42<=k<=44,
	-33<=1<=32	-29<=1<=53	-36<=1<=36	-43<=1<=40
Reflections	148451	29799	361230	96882
collected				
Independent	18940	7828 [R(int) =	53869	4113 [R(int) =
reflections	[R(int) =	0.1333]	[R(int) =	0.0805]
	0.1631]		0.1469]	
Completeness to	97.5 %	97.1 %	97.5	100.0 %
theta				
Max. and min.	0.3030 and	0.5041 and	0.5210 and	0.5872 and
transmission	0.0912	0.1731	0.2208	0.3571
Data / restraints /	18940 / 3142 /	7828 / 1899 /	53869 / 2009 /	4113 / 0 / 131
parameters	1558	937	3074	
Goodness-of-fit	1.030	1.481	1.036	1.085
on F ²				
Final R indices	R1 = 0.0949,	R1 = 0.1726,	R1 = 0.0765,	R1 = 0.0782,
[<i>I</i> >2sigma(<i>I</i>)]	wR2 = 0.2658	wR2 = 0.4085	wR2 = 0.2069	wR2 = 0.2469
R indices (all	R1 = 0.1989,	R1 = 0.3348,	R1 = 0.1787,	R1 = 0.1015,
data)	wR2 = 0.3665	wR2 = 0.5357	wR2 = 0.3161	wR2 = 0.2895

Largest diff. peak	1.515 and -0.642	4.161 and -0.930	1.131 and -1.276	2.445 and -
and hole	e Å-3	e Å-3	e Å-3	0.764 e Å ⁻³
CCDC No.	2356804	2356806	2356807	2356892

Supplementary Table 3 | Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for Ag₁₇ cluster. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. Check CIF justifications of level A and level B alerts.

	x	У	Ζ	U(eq)	
Ag(1)	6338(1)	7418(1)	6317(1)	140(1)	
Ag(2)	6354(1)	8608(1)	6696(1)	151(1)	
Ag(3)	6767(1)	7640(1)	6814(1)	150(1)	
Ag(4)	6562(1)	6393(1)	6715(1)	152(1)	
Ag(5)	6925(1)	9043(1)	6728(1)	159(1)	
Ag(6)	6298(1)	6240(1)	5930(1)	156(1)	
Ag(7)	6709(1)	8266(1)	6024(1)	153(1)	
Ag(8)	5881(1)	7934(1)	6639(1)	153(1)	
Ag(9)	6277(1)	7309(1)	7150(1)	151(1)	
Ag(10)	6800(1)	6941(1)	5983(1)	155(1)	
Ag(11)	6801(1)	5491(1)	6093(1)	169(1)	
Ag(12)	6115(1)	8470(1)	5942(1)	155(1)	
Ag(13)	5964(1)	6544(1)	6579(1)	155(1)	
Ag(14)	6419(1)	7510(1)	5486(1)	158(1)	
Ag(15)	5904(1)	7170(1)	5838(1)	157(1)	
Ag(16)	5704(1)	7067(1)	7336(1)	163(1)	
Ag(17)	5930(1)	8054(1)	5109(1)	175(1)	
C(1)	6995(5)	8351(13)	7693(10)	157(4)	
C(2)	6683(5)	8589(13)	7791(10)	167(6)	
B(1)	6690(8)	9057(18)	8235(12)	176(7)	
B(2)	6826(8)	8637(17)	8630(13)	182(7)	
B(3)	6818(6)	7803(17)	7946(12)	161(6)	
B(4)	6935(7)	9073(17)	7838(13)	169(6)	
B(5)	7129(7)	7913(17)	8080(12)	167(5)	

B(6)	7217(8)	8697(17)	8004(12)	173(6)
B(7)	6619(8)	8234(17)	8286(12)	172(7)
B(8)	6888(8)	7847(18)	8460(13)	181(7)
B(9)	7012(8)	9191(19)	8329(12)	183(8)
B(10)	7147(8)	8353(18)	8473(13)	185(7)
C(3)	7366(5)	8671(12)	5947(10)	166(5)
C(4)	7413(6)	7972(14)	5684(11)	189(7)
B(11)	7701(8)	8021(19)	5479(15)	196(8)
B(12)	7653(7)	7556(18)	5895(14)	190(8)
B(13)	7448(7)	8006(16)	6236(14)	176(7)
B(14)	7863(7)	8732(17)	5591(14)	189(8)
B(15)	7770(7)	7977(19)	6306(14)	188(7)
B(16)	7921(8)	7947(17)	5856(14)	185(8)
B(17)	7882(7)	8705(18)	6101(14)	186(8)
B(18)	7586(6)	8682(17)	6345(14)	175(6)
B(19)	7510(8)	8673(18)	5449(14)	191(7)
B(20)	7645(7)	9120(18)	5922(12)	178(7)
C(5)	7294(5)	6262(13)	6824(11)	179(6)
C(6)	7130(5)	5650(13)	7014(11)	164(5)
B(21)	7503(7)	5317(17)	7548(14)	185(7)
B(22)	7655(7)	5317(17)	7091(13)	183(8)
B(23)	7327(6)	5028(17)	7184(12)	172(7)
B(24)	7179(7)	5544(16)	7477(14)	173(6)
B(25)	7160(7)	6297(16)	7296(13)	175(6)
B(26)	7496(7)	6604(18)	7229(13)	193(8)
B(27)	7642(7)	6062(17)	6873(15)	189(8)
B(28)	7704(8)	5980(18)	7402(15)	199(9)
B(29)	7415(7)	6137(17)	7676(14)	192(8)
B(30)	7399(6)	5440(17)	6778(13)	174(6)
C(7)	6488(6)	10154(14)	6100(11)	182(6)
C(8)	6456(5)	10240(13)	6609(11)	166(6)
B(31)	6272(8)	10640(18)	5846(15)	198(8)
B(32)	6175(7)	10271(17)	6320(13)	182(7)
B(33)	6233(7)	10833(17)	6724(15)	191(7)
B(34)	6558(8)	10987(16)	6733(15)	197(8)
B(35)	6702(7)	10589(17)	6345(14)	187(7)

B(36)	6583(7)	10827(17)	5887(15)	195(7)
B(37)	6629(8)	11375(18)	6259(15)	207(9)
B(38)	6349(7)	11464(18)	5975(16)	201(9)
B(39)	6331(8)	11517(19)	6508(17)	215(9)
B(40)	6099(8)	11076(18)	6278(15)	200(8)
C(9)	5548(6)	9184(15)	5641(11)	179(6)
C(10)	5353(6)	9635(18)	5316(12)	219(9)
B(41)	5492(8)	9311(18)	6084(14)	185(7)
B(42)	5469(8)	9940(20)	5813(14)	202(8)
B(43)	5135(8)	10040(30)	5706(16)	236(10)
B(44)	5242(8)	9860(20)	6171(16)	224(10)
B(45)	5308(7)	8810(20)	5381(14)	205(8)
B(46)	5375(7)	8610(20)	5864(13)	188(8)
B(47)	5186(8)	9010(20)	6225(15)	211(9)
B(48)	5047(8)	8680(30)	5732(15)	223(10)
B(49)	4951(9)	9430(20)	5902(15)	232(10)
B(50)	5023(8)	9350(30)	5417(16)	241(10)
C(11)	5760(6)	9340(14)	7327(11)	191(7)
C(12)	5596(5)	8696(14)	7438(11)	172(6)
B(51)	5633(8)	9990(20)	7608(16)	217(9)
B(52)	5650(6)	8520(20)	7917(13)	185(6)
B(53)	5369(7)	8883(18)	7802(13)	181(7)
B(54)	5421(7)	9395(18)	7404(14)	189(7)
B(55)	5901(7)	8800(20)	7608(13)	186(7)
B(56)	5851(8)	9070(20)	8098(15)	211(9)
B(57)	5522(8)	9090(20)	8232(15)	210(8)
B(58)	5400(8)	9650(20)	7899(14)	202(8)
B(59)	5930(8)	9610(20)	7715(15)	213(9)
B(60)	5697(8)	9790(20)	8106(16)	226(11)
C(13)	5307(6)	6174(16)	6690(10)	174(6)
C(14)	5238(6)	6922(16)	6459(10)	183(7)
B(61)	4889(7)	7080(20)	6470(13)	203(8)
B(62)	5075(7)	6710(20)	6887(14)	183(7)
B(63)	5029(7)	5870(20)	6910(13)	190(7)
B(64)	5179(8)	5540(20)	6448(12)	194(7)
B(65)	5298(8)	6230(20)	6207(13)	189(7)

B(66)	5030(8)	6720(20)	6032(14)	201(8)
B(67)	4754(8)	6430(20)	6767(14)	214(9)
B(68)	4722(9)	6400(30)	6222(15)	225(10)
B(69)	4826(8)	5700(20)	6481(14)	220(9)
B(70)	4963(9)	5870(20)	6040(15)	217(10)
C(15)	6296(7)	3789(14)	5934(12)	210(8)
C(16)	6229(6)	4596(14)	6056(12)	180(6)
B(71)	6370(8)	4183(17)	6391(14)	193(7)
B(72)	5899(8)	4684(19)	6171(14)	203(8)
B(73)	6168(8)	4741(18)	6492(14)	190(7)
B(74)	6250(9)	3470(19)	6439(16)	216(9)
B(75)	5980(9)	4110(20)	5808(17)	217(9)
B(76)	5784(10)	3930(20)	6147(17)	235(10)
B(77)	5868(9)	4282(19)	6629(17)	222(9)
B(78)	6170(9)	4021(19)	6803(17)	213(8)
B(79)	5936(9)	3490(20)	6547(18)	235(10)
B(80)	6007(10)	3350(20)	6045(18)	246(11)
C(17)	6159(5)	6290(14)	7974(10)	168(5)
C(18)	6470(6)	5964(14)	7842(10)	185(7)
B(81)	6414(8)	5165(18)	7825(13)	186(7)
B(82)	6191(7)	5684(17)	7631(13)	175(6)
B(83)	5940(7)	5715(18)	7974(12)	171(7)
B(84)	6028(7)	6060(20)	8392(13)	181(7)
B(85)	6362(7)	6210(20)	8385(13)	191(7)
B(86)	6536(8)	5470(20)	8312(13)	196(8)
B(87)	6261(7)	5500(20)	8608(14)	195(8)
B(88)	6266(7)	4870(20)	8259(13)	188(8)
B(89)	5982(7)	5200(20)	8345(13)	186(8)
B(90)	6079(7)	4997(19)	7872(13)	183(8)
C(19)	6525(7)	8487(15)	4653(11)	191(6)
C(20)	6824(6)	8710(15)	4863(12)	198(7)
B(91)	6560(7)	9134(16)	4992(14)	183(7)
B(92)	6569(8)	9870(20)	4765(14)	204(9)
B(93)	6787(9)	8460(20)	4381(15)	215(8)
B(94)	7016(9)	9090(20)	4469(15)	222(10)
B(95)	6800(10)	9150(20)	4033(16)	231(10)

B(97)	6525(9) 6353(0)	9730(20)	4264(15)	220(10)
$\mathbf{D}(00)$	6353(0)		1201(12)	220(10)
B(98)	0333(9)	9260(19)	4578(13)	200(8)
B(99)	6868(8)	9512(19)	4901(14)	200(9)
B(100)	6513(10)	8760(20)	4155(15)	217(9)
C(21)	5648(6)	6549(16)	4965(11)	189(6)
C(22)	5399(8)	6415(19)	4623(11)	226(8)
B(101)	5892(10)	5430(20)	4770(15)	218(9)
B(102)	5692(11)	5190(30)	4390(17)	265(14)
B(103)	5441(9)	5930(20)	5029(15)	210(8)
B(104)	5744(8)	5829(18)	5201(15)	197(8)
B(105)	5941(9)	6191(19)	4886(14)	199(8)
B(106)	5913(11)	5860(20)	4376(17)	236(10)
B(107)	5584(10)	5250(20)	4938(16)	231(10)
B(108)	5389(11)	5580(30)	4552(17)	260(12)
B(109)	5610(12)	6000(30)	4179(17)	261(12)
B(110)	5750(9)	6560(20)	4463(15)	219(8)
C(23)	7105(6)	6072(12)	5245(11)	168(6)
B(113)	7021(8)	6672(19)	4927(13)	191(8)
B(111)	6829(9)	6023(19)	4972(14)	194(7)
B(112)	6898(11)	6380(20)	4503(15)	231(10)
C(24)	7337(7)	6414(17)	4929(11)	209(8)
B(114)	7186(11)	6500(30)	4449(16)	230(10)
B(115)	7395(12)	5900(20)	4519(15)	248(11)
B(116)	7160(13)	5320(30)	4588(17)	267(12)
B(117)	7114(13)	5880(30)	4160(19)	286(15)
B(118)	7346(10)	5620(20)	5034(15)	220(9)
B(119)	6990(10)	5370(19)	5006(15)	214(9)
B(120)	6872(13)	5540(30)	4556(17)	261(12)
S(1)	7061(1)	9082(3)	6011(3)	158(2)
S(2)	6078(1)	7083(4)	7818(3)	160(2)
S(3)	7111(1)	8222(3)	7195(3)	155(2)
S(4)	6814(1)	5401(3)	6839(3)	162(2)
S(5)	6530(1)	9636(3)	6960(3)	162(2)
S(6)	5882(2)	9124(4)	5440(3)	164(2)
S(7)	5504(1)	8097(4)	7102(3)	162(2)

S(8)	6405(2)	5126(4)	5718(3)	176(3)
S(9)	5600(2)	6065(4)	6971(3)	170(3)
S(10)	6348(2)	7793(4)	4772(3)	174(2)
S(11)	7136(2)	6158(4)	5751(3)	165(3)
S(12)	5590(2)	7247(4)	5269(3)	172(2)

checkCIF/PLATON report (justification)

Alert level A

THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5058

Response: The crystal was not diffracting at higher Brag angles.

Hence a resolution cut was made during data integration in order to omit

weak higher reflections.

Alert level B

PLAT084_ALERT_3_B High wR2 Value (i.e. > 0.25) 0.37 Report

Response: Due to weak higher angle reflections. Also, the carborane

moieties disordered in the lattice. This contributes high wR2 values.

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds 0.04556 Ang.

Response: Due to poor resolution of the crystal, the accuracies of C-C bonds are low.

Supplementary Table 4 | Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Ag₁₃Cu₄ cluster. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. Check CIF justifications of level A and level B alerts.

	x	У	Z	U(eq)
Ag(1)	8144(1)	2594(1)	7794(1)	82(1)
Ag(2)	7346(1)	3291(1)	8006(1)	90(1)
Ag(3)	8577(1)	3376(1)	8537(1)	91(1)
Ag(4)	7573(1)	2405(1)	8561(1)	91(1)
Ag(5)	8464(1)	3779(1)	7668(1)	92(1)
Ag(6)	7511(1)	2979(1)	7123(1)	91(1)
Ag(7)	6901(1)	2041(1)	7684(1)	90(1)
Ag(8)	9396(1)	3132(1)	7882(1)	94(1)
Ag(9)	7685(1)	1787(1)	7056(1)	93(1)
Ag(10)	8770(1)	2235(1)	8485(1)	94(1)

Ag(11)	8749(1)	2797(1)	7045(1)	94(1)
Ag(12)	8975(1)	1942(1)	7574(1)	96(1)
Ag(13)	7788(1)	1410(1)	7902(1)	94(1)
Cu(1)	6300(1)	2563(1)	8397(1)	84(1)
Cu(2)	9563(1)	4350(1)	8285(1)	89(1)
Cu(3)	7805(1)	2431(1)	6276(1)	89(1)
Cu(4)	8898(1)	1030(1)	8216(1)	95(1)
C(1)	5928(6)	3557(6)	7752(4)	86(3)
C(2)	5239(7)	3095(8)	7604(5)	114(4)
C(3)	6959(6)	3040(6)	9443(4)	89(3)
C(4)	6595(7)	3579(7)	9440(6)	109(3)
C(5)	6520(6)	1320(6)	6189(4)	92(3)
C(6)	6129(7)	588(7)	6136(5)	113(4)
C(7)	7647(7)	3817(7)	6252(4)	96(3)
C(8)	7246(8)	4322(8)	6231(6)	127(4)
C(9)	5743(6)	1099(6)	8106(5)	92(3)
C(10)	6174(8)	628(7)	7961(5)	111(3)
C(11)	9207(6)	2173(6)	6123(4)	87(3)
C(12)	9400(7)	2138(7)	5602(5)	106(3)
C(13)	9808(6)	3963(6)	9298(4)	85(3)
C(14)	10138(7)	3438(7)	9113(5)	108(4)
C(15)	10545(7)	4176(7)	7533(5)	103(3)
C(16)	10555(8)	4874(8)	7417(6)	119(4)
C(17)	8582(6)	5212(6)	8108(5)	92(3)
C(18)	8280(9)	5674(9)	7833(6)	137(4)
C(19)	10334(7)	1563(7)	7890(5)	109(4)
C(20)	10702(9)	2211(9)	7748(7)	147(4)
C(21)	7868(7)	19(6)	7512(5)	97(3)
C(22)	7210(8)	-482(8)	7346(6)	130(4)
C(23)	8705(7)	1318(6)	9296(5)	97(3)
C(24)	8352(9)	598(8)	9338(7)	140(5)
S(1)	6378(2)	3503(2)	8248(1)	92(1)
S(2)	6729(2)	2404(2)	9052(1)	92(1)
S(3)	7349(2)	1470(2)	6258(1)	96(1)
S(4)	7233(2)	3101(2)	6348(1)	93(1)
S(5)	5829(2)	1792(2)	7895(1)	93(1)

S(6)	8834(2)	2748(2)	6245(1)	93(1)
S(7)	9273(2)	4239(2)	8972(1)	94(1)
S(8)	10330(2)	3957(2)	8049(1)	101(1)
S(9)	9053(2)	4818(2)	7828(1)	97(1)
S(10)	9563(2)	1199(2)	7686(1)	102(1)
S(11)	7947(2)	427(2)	8037(1)	101(1)
S(12)	9210(2)	1536(2)	8886(1)	103(1)
B(1)	5287(8)	3795(9)	7805(7)	108(4)
B(2)	4752(9)	3487(10)	7361(7)	123(5)
B(3)	5130(8)	3042(10)	7030(6)	112(4)
B(4)	5869(8)	3078(8)	7296(5)	96(4)
B(5)	5936(9)	4236(8)	7639(6)	105(4)
B(6)	5215(10)	4201(11)	7371(7)	132(5)
B(7)	5127(9)	3724(11)	6895(7)	128(5)
B(8)	5778(8)	3476(9)	6849(6)	107(4)
B(9)	6272(8)	3778(8)	7314(6)	97(4)
B(10)	5838(10)	4201(10)	7064(7)	125(5)
B(11)	6491(10)	3101(9)	9834(6)	109(4)
B(12)	7196(10)	2938(9)	9948(6)	114(4)
B(13)	7731(9)	3324(9)	9610(7)	112(4)
B(14)	7332(9)	3707(8)	9307(7)	103(4)
B(15)	7103(9)	4233(9)	9636(7)	118(4)
B(16)	7829(10)	4085(9)	9742(7)	120(5)
B(17)	7735(11)	3628(10)	10162(7)	138(5)
B(18)	6952(12)	3467(10)	10305(7)	140(6)
B(19)	6576(11)	3872(10)	9968(8)	134(5)
B(20)	7370(11)	4171(10)	10169(7)	134(5)
B(21)	6159(8)	1710(9)	5876(6)	106(4)
B(22)	6183(8)	1014(8)	5687(6)	105(4)
B(23)	6115(8)	1742(9)	6433(6)	103(4)
B(24)	6105(8)	1084(9)	6600(6)	106(4)
B(25)	5416(8)	1283(9)	6544(7)	112(4)
B(26)	5416(8)	560(9)	6344(7)	112(4)
B(27)	5459(9)	553(9)	5782(7)	120(5)
B(28)	5481(9)	1250(9)	5631(7)	118(5)
B(29)	5469(8)	1717(9)	6100(7)	114(4)

B(30)	5027(9)	990(8)	6032(6)	109(4)
B(31)	7796(10)	4365(8)	6660(7)	110(4)
B(32)	8395(8)	4136(9)	6443(7)	107(4)
B(33)	8194(9)	3920(10)	5893(7)	118(4)
B(34)	7450(10)	4010(11)	5755(7)	129(5)
B(35)	7559(12)	4770(12)	5811(9)	165(7)
B(36)	8150(13)	4533(12)	5637(8)	156(6)
B(37)	8709(11)	4588(10)	6060(7)	125(5)
B(38)	8467(10)	4873(10)	6531(7)	121(5)
B(39)	7757(10)	5000(10)	6406(9)	138(5)
B(40)	8309(11)	5119(11)	6037(8)	140(5)
B(41)	5384(9)	482(8)	7781(6)	105(4)
B(42)	5017(9)	755(9)	8204(6)	108(4)
B(43)	5583(8)	1038(8)	8618(6)	97(3)
B(44)	6278(8)	977(8)	8485(6)	101(4)
B(45)	6258(9)	226(8)	8402(6)	103(4)
B(46)	5701(9)	-83(9)	7959(7)	114(4)
B(47)	4999(9)	-1(9)	8124(7)	121(5)
B(48)	5092(9)	352(9)	8660(7)	115(4)
B(49)	5894(9)	508(9)	8829(7)	110(4)
B(50)	5523(9)	-159(9)	8512(7)	114(4)
B(51)	9715(8)	2013(8)	6496(6)	97(4)
B(52)	9002(8)	1502(8)	6310(6)	94(3)
B(53)	8862(8)	1573(8)	5770(5)	94(3)
B(54)	9956(7)	2378(9)	6049(6)	95(3)
B(55)	9683(9)	1267(9)	6356(7)	108(4)
B(56)	10282(9)	1818(9)	6181(6)	112(4)
B(57)	10104(9)	1904(9)	5628(7)	110(4)
B(58)	9391(8)	1392(9)	5453(6)	110(4)
B(59)	9142(9)	1020(9)	5895(6)	106(4)
B(60)	9931(9)	1189(9)	5828(6)	112(4)
B(61)	10561(8)	4147(8)	9234(6)	96(3)
B(62)	10299(7)	4452(9)	9660(5)	96(4)
B(63)	9704(9)	3943(9)	9838(6)	106(4)
B(64)	9619(9)	3287(9)	9482(6)	108(4)
B(65)	10048(10)	3394(11)	10015(7)	126(5)

B(66)	10309(9)	3076(10)	9551(6)	111(4)
B(67)	10905(9)	3602(9)	9377(7)	115(4)
B(68)	10988(9)	4261(9)	9721(6)	113(4)
B(69)	10466(9)	4131(10)	10117(6)	121(5)
B(70)	10829(9)	3582(9)	9937(6)	118(5)
B(71)	10392(9)	3709(9)	7072(6)	109(4)
B(72)	11137(8)	3963(9)	7324(7)	110(4)
B(73)	11227(9)	4682(9)	7537(7)	117(4)
B(74)	10011(9)	4269(9)	7129(6)	110(4)
B(75)	10305(9)	4141(9)	6645(7)	116(4)
B(76)	10398(10)	4885(10)	6852(7)	125(5)
B(77)	11150(10)	5123(10)	7115(7)	125(5)
B(78)	11533(10)	4555(10)	7058(7)	124(5)
B(79)	11011(10)	3950(10)	6757(7)	123(5)
B(80)	11015(10)	4678(10)	6623(7)	126(5)
B(81)	7804(9)	5048(10)	7999(7)	117(4)
B(82)	7604(12)	5730(11)	8072(7)	140(6)
B(83)	8306(12)	6276(11)	8226(8)	143(5)
B(84)	8923(11)	5942(8)	8230(7)	114(4)
B(85)	8628(10)	6139(9)	8720(7)	122(5)
B(86)	7834(11)	6022(10)	8617(7)	125(5)
B(87)	7532(9)	5252(10)	8495(7)	119(5)
B(88)	8148(7)	4944(8)	8500(6)	96(3)
B(89)	8775(8)	5492(7)	8627(5)	89(3)
B(90)	8168(9)	5534(9)	8887(7)	109(4)
B(91)	10515(9)	2151(10)	8282(7)	126(4)
B(92)	11256(10)	2575(12)	8200(8)	144(4)
B(93)	11486(11)	2207(13)	7739(9)	162(5)
B(94)	10900(10)	1556(12)	7574(9)	151(4)
B(95)	11539(10)	1512(13)	7905(7)	162(4)
B(96)	11756(10)	2094(10)	8277(8)	152(4)
B(97)	11154(10)	2080(10)	8595(8)	140(4)
B(98)	10586(8)	1504(11)	8403(7)	126(4)
B(99)	10814(9)	1107(12)	7981(8)	143(4)
B(100)	11332(8)	1445(9)	8429(7)	152(4)
B(101)	8205(8)	317(9)	7067(6)	100(4)

B(102)	7417(8)	174(9)	7076(6)	107(4)
B(103)	7885(10)	-683(9)	7515(8)	123(4)
B(104)	8465(9)	-193(8)	7321(7)	108(4)
B(105)	7769(9)	-14(9)	6603(7)	114(4)
B(106)	7126(11)	-533(11)	6760(8)	141(6)
B(107)	7412(13)	-1052(10)	7037(8)	148(6)
B(108)	8227(13)	-856(10)	7043(8)	141(5)
B(109)	8426(11)	-221(9)	6773(7)	121(4)
B(110)	7768(12)	-770(10)	6587(8)	139(5)
B(111)	8965(12)	988(11)	9703(7)	133(5)
B(112)	8888(9)	1681(9)	9795(6)	113(4)
B(113)	8296(9)	1773(9)	9486(6)	104(4)
B(114)	7935(9)	1092(9)	9203(7)	116(4)
B(115)	8330(15)	529(12)	9917(10)	175(7)
B(116)	8677(13)	1219(13)	10180(8)	153(6)
B(117)	8249(11)	1724(11)	10043(7)	133(5)
B(118)	7626(11)	1330(10)	9692(7)	127(5)
B(119)	7658(13)	623(11)	9592(9)	153(6)
B(120)	7876(13)	993(12)	10107(9)	153(6)
Cu(5)	3761(1)	2228(1)	10417(1)	97(1)
Cu(6)	7942(1)	262(1)	3685(1)	93(1)
Cu(7)	6087(1)	3616(1)	3785(1)	103(1)
C(25)	3462(8)	908(8)	9692(6)	118(4)
C(26)	3624(9)	472(9)	9462(6)	150(5)
C(27)	3271(11)	160(10)	9097(7)	176(6)
C(28)	2711(11)	257(11)	8963(8)	178(7)
C(29)	2516(9)	676(10)	9194(7)	155(6)
C(30)	2883(8)	1026(8)	9565(6)	131(5)
C(31)	4652(7)	1191(7)	10149(5)	97(4)
C(32)	4837(8)	778(8)	10377(5)	115(5)
C(33)	5439(9)	708(8)	10351(6)	129(6)
C(34)	5836(8)	1045(8)	10080(6)	116(5)
C(35)	5634(8)	1417(7)	9863(5)	108(4)
C(36)	5039(7)	1513(7)	9884(5)	101(4)
C(37)	3570(7)	921(7)	10618(5)	107(4)
C(38)	2928(6)	1012(7)	10701(6)	108(4)

C(39)	3267(11)	1743(10)	11618(7)	162(5)
C(40)	3292(13)	1935(11)	12065(8)	184(6)
C(41)	3046(15)	2355(13)	12213(9)	210(7)
C(42)	2620(15)	2516(12)	11930(9)	212(7)
C(43)	2579(13)	2380(10)	11476(8)	187(6)
C(44)	2912(12)	1963(9)	11324(7)	156(5)
C(45)	2155(9)	1776(9)	10486(7)	181(6)
C(46)	2097(9)	2198(9)	10211(6)	175(6)
C(47)	1527(9)	2197(10)	10002(8)	206(7)
C(48)	1015(10)	1784(11)	10075(10)	234(8)
C(49)	1067(10)	1338(12)	10338(10)	245(8)
C(50)	1641(9)	1332(11)	10553(9)	224(7)
C(51)	4562(8)	3276(7)	11285(5)	109(4)
C(52)	4001(10)	3386(10)	11346(7)	155(8)
C(53)	3944(13)	3835(13)	11641(9)	201(12)
C(54)	4426(16)	4154(14)	11892(10)	204(13)
C(55)	4994(13)	4092(11)	11837(8)	176(9)
C(56)	5085(9)	3623(8)	11533(6)	136(6)
C(57)	5149(8)	2343(7)	11116(6)	117(5)
C(58)	4950(10)	2055(8)	11477(7)	141(6)
C(59)	5318(12)	1731(10)	11671(9)	174(9)
C(60)	5843(14)	1674(13)	11491(11)	196(12)
C(61)	6040(12)	1941(12)	11127(10)	187(10)
C(62)	5679(8)	2287(9)	10931(6)	141(6)
C(63)	5066(7)	3174(7)	10476(5)	102(4)
C(64)	4631(7)	3463(7)	10233(5)	106(4)
C(65)	3429(8)	3379(8)	9820(6)	114(4)
C(66)	3261(9)	3475(9)	9407(7)	148(5)
C(67)	2853(10)	3818(11)	9325(8)	170(6)
C(68)	2614(10)	4067(10)	9647(9)	158(6)
C(69)	2756(9)	3983(9)	10039(8)	144(5)
C(70)	3171(8)	3630(8)	10153(7)	129(5)
C(71)	4186(7)	2694(7)	9430(5)	99(4)
C(72)	3814(11)	2210(8)	9194(6)	147(7)
C(73)	4013(14)	1979(11)	8813(7)	188(11)
C(74)	4550(12)	2259(13)	8661(7)	163(8)

C(75)	4910(10)	2715(13)	8887(7)	179(10)
C(76)	4726(9)	2968(11)	9267(6)	154(8)
C(77)	4761(8)	4204(7)	3832(6)	120(4)
C(78)	4531(9)	3771(9)	4096(8)	151(7)
C(79)	3961(11)	3701(12)	4247(10)	194(10)
C(80)	3586(12)	4059(13)	4097(11)	204(12)
C(81)	3813(11)	4475(12)	3834(11)	204(12)
C(82)	4402(9)	4573(10)	3706(7)	152(7)
C(83)	5855(8)	5043(8)	3688(7)	121(5)
C(84)	5872(9)	5333(9)	4099(7)	139(6)
C(85)	6166(12)	5908(11)	4199(10)	183(10)
C(86)	6426(14)	6206(10)	3904(12)	188(12)
C(87)	6442(12)	5962(12)	3469(10)	186(10)
C(88)	6141(10)	5362(10)	3376(8)	156(7)
C(89)	5317(8)	4093(8)	3031(6)	130(5)
C(90)	5148(7)	3446(8)	2909(6)	121(5)
C(91)	6312(5)	3367(6)	2663(4)	119(4)
C(92)	6782(6)	3875(6)	2753(4)	162(8)
C(93)	7149(6)	4079(6)	2428(5)	198(12)
C(94)	7046(7)	3777(8)	2013(4)	195(11)
C(95)	6576(7)	3270(7)	1922(3)	182(10)
C(96)	6209(6)	3065(5)	2248(4)	157(7)
C(97)	5560(10)	2373(8)	2995(7)	136(5)
C(98)	4982(11)	2059(9)	3020(7)	158(6)
C(99)	4807(12)	1431(10)	3001(8)	170(6)
C(100)	5253(12)	1156(10)	2928(8)	162(6)
C(101)	5832(11)	1428(9)	2876(7)	163(6)
C(102)	5989(10)	2057(9)	2909(7)	155(5)
C(103)	5416(8)	2296(8)	4282(6)	122(4)
C(104)	4803(9)	2191(9)	4185(7)	152(5)
C(105)	4404(10)	1652(9)	4123(8)	170(6)
C(106)	4638(10)	1178(9)	4158(8)	155(6)
C(107)	5262(10)	1231(8)	4243(8)	153(5)
C(108)	5642(9)	1817(8)	4314(7)	139(5)
C(109)	5691(8)	3377(8)	4847(6)	108(4)
C(110)	5764(9)	3967(8)	4905(6)	130(6)

5638(12)	4230(10)	5300(6)	160(8)
5435(12)	3899(11)	5622(7)	162(9)
5365(12)	3336(11)	5573(8)	166(9)
5493(9)	3047(9)	5193(6)	131(6)
7555(8)	4632(8)	4176(6)	147(5)
7441(8)	5073(7)	3944(6)	145(5)
7765(8)	5654(8)	4027(7)	159(6)
8178(11)	5800(11)	4389(8)	203(7)
8397(12)	5363(9)	4582(7)	208(8)
8076(10)	4776(9)	4481(7)	197(7)
7628(8)	3555(10)	3722(6)	135(5)
8255(10)	3783(11)	3719(8)	165(6)
8578(11)	3459(12)	3474(9)	179(7)
8342(12)	2950(13)	3266(9)	188(7)
7747(11)	2711(12)	3281(8)	174(6)
7359(10)	2989(10)	3530(7)	151(5)
6675(7)	2978(7)	4522(5)	105(4)
7138(8)	3568(7)	4560(5)	115(5)
6756(4)	-623(4)	2872(3)	95(4)
6166(4)	-938(5)	2932(3)	118(5)
5926(4)	-1488(5)	2707(4)	137(7)
6275(5)	-1723(4)	2421(4)	127(6)
6864(5)	-1408(6)	2360(4)	165(9)
7105(4)	-858(5)	2586(4)	145(7)
7149(7)	568(8)	2747(6)	117(5)
7577(9)	1096(8)	2776(6)	131(6)
7631(10)	1483(10)	2466(8)	159(8)
7251(11)	1346(11)	2082(8)	181(10)
6835(11)	781(11)	2025(7)	166(8)
6789(8)	428(9)	2348(6)	141(7)
6512(6)	246(7)	3493(5)	105(4)
6768(7)	806(7)	3812(5)	107(4)
7739(7)	1493(7)	4418(5)	100(4)
8132(10)	1905(8)	4225(6)	138(6)
8381(10)	2478(8)	4414(7)	141(7)
8212(9)	2640(9)	4818(7)	131(6)
	5638(12) 5435(12) 5365(12) 5493(9) 7555(8) 7441(8) 7765(8) 8178(11) 8397(12) 8076(10) 7628(8) 8255(10) 8578(11) 8342(12) 7747(11) 7359(10) 6675(7) 7138(8) 6756(4) 6166(4) 5926(4) 6275(5) 6864(5) 7105(4) 7149(7) 7577(9) 7631(10) 7251(11) 6835(11) 6789(8) 6512(6) 6768(7) 7739(7) 8132(10) 8381(10) 8212(9)	5638(12) $4230(10)$ $5435(12)$ $3899(11)$ $5365(12)$ $3336(11)$ $5493(9)$ $3047(9)$ $7555(8)$ $4632(8)$ $7441(8)$ $5073(7)$ $7765(8)$ $5654(8)$ $8178(11)$ $5800(11)$ $8397(12)$ $5363(9)$ $8076(10)$ $4776(9)$ $7628(8)$ $3555(10)$ $8255(10)$ $3783(11)$ $8578(11)$ $3459(12)$ $8342(12)$ $2950(13)$ $7747(11)$ $2711(12)$ $7359(10)$ $2989(10)$ $6675(7)$ $2978(7)$ $7138(8)$ $3568(7)$ $6756(4)$ $-623(4)$ $6166(4)$ $-938(5)$ $5926(4)$ $-1488(5)$ $6275(5)$ $-1723(4)$ $6864(5)$ $-1408(6)$ $7105(4)$ $-858(5)$ $7149(7)$ $568(8)$ $7577(9)$ $1096(8)$ $7631(10)$ $1483(10)$ $7251(11)$ $1346(11)$ $6789(8)$ $428(9)$ $6512(6)$ $246(7)$ $6768(7)$ $806(7)$ $7739(7)$ $1493(7)$ $8132(10)$ $1905(8)$ $8212(9)$ $2640(9)$	5638(12) $4230(10)$ $5300(6)$ $5435(12)$ $3399(11)$ $5622(7)$ $5365(12)$ $3336(11)$ $5573(8)$ $5493(9)$ $3047(9)$ $5193(6)$ $7555(8)$ $4632(8)$ $4176(6)$ $7441(8)$ $5073(7)$ $3944(6)$ $7765(8)$ $5654(8)$ $4027(7)$ $8178(11)$ $5800(11)$ $4389(8)$ $8397(12)$ $5363(9)$ $4582(7)$ $8076(10)$ $4776(9)$ $4481(7)$ $7628(8)$ $3555(10)$ $3722(6)$ $8255(10)$ $3783(11)$ $3719(8)$ $8578(11)$ $3459(12)$ $3474(9)$ $8342(12)$ $2950(13)$ $3266(9)$ $7747(11)$ $2711(12)$ $3281(8)$ $7359(10)$ $2989(10)$ $3530(7)$ $6675(7)$ $2978(7)$ $4522(5)$ $7138(8)$ $3568(7)$ $4560(5)$ $6756(4)$ $-623(4)$ $2872(3)$ $6166(4)$ $-938(5)$ $2932(3)$ $5926(4)$ $-1488(5)$ $2707(4)$ $6275(5)$ $-1723(4)$ $2421(4)$ $6864(5)$ $-1408(6)$ $2360(4)$ $7149(7)$ $568(8)$ $2747(6)$ $7577(9)$ $1096(8)$ $2776(6)$ $7631(10)$ $1483(10)$ $2466(8)$ $7251(11)$ $1346(11)$ $2082(8)$ $6835(11)$ $781(11)$ $2025(7)$ $6789(8)$ $428(9)$ $2348(6)$ $6512(6)$ $246(7)$ $3493(5)$ $6768(7)$ $806(7)$ $3812(5)$ $7739(7)$ $1493(7)$ $4418(5)$ <

C(147)	7825(8)	2236(8)	4997(6)	121(5)
C(148)	7560(7)	1678(7)	4823(5)	106(4)
C(149)	7175(7)	333(7)	4592(5)	101(4)
C(150)	7594(8)	247(8)	4919(5)	115(5)
C(151)	7415(9)	-95(8)	5251(6)	125(5)
C(152)	6800(10)	-364(8)	5268(6)	134(6)
C(153)	6376(9)	-295(9)	4941(6)	134(6)
C(154)	6552(7)	77(8)	4613(6)	118(5)
C(155)	8479(7)	-672(7)	4370(5)	95(4)
C(156)	8866(7)	-185(7)	4599(5)	106(4)
C(157)	9185(8)	-186(9)	4994(6)	125(6)
C(158)	9093(8)	-687(9)	5187(6)	127(6)
C(159)	8692(8)	-1184(9)	4982(6)	136(6)
C(160)	8382(7)	-1173(8)	4571(5)	115(5)
C(161)	6940(9)	-1273(9)	3988(7)	145(5)
C(162)	6418(9)	-1737(9)	3973(8)	154(6)
C(163)	6431(10)	-2215(10)	3686(8)	157(6)
C(164)	6885(11)	-2238(9)	3437(7)	155(6)
C(165)	7446(10)	-1779(8)	3497(7)	153(6)
C(166)	7451(8)	-1295(7)	3765(6)	116(4)
C(167)	8621(7)	-753(7)	3465(5)	109(4)
C(168)	9152(7)	-212(7)	3464(5)	111(4)
C(169)	8957(8)	638(8)	2883(6)	111(4)
C(170)	8719(8)	204(9)	2531(6)	132(6)
C(171)	8692(11)	320(12)	2107(7)	166(8)
C(172)	8913(15)	903(15)	2008(9)	207(12)
C(173)	9132(14)	1364(13)	2355(9)	207(12)
C(174)	9155(11)	1202(10)	2779(8)	165(8)
C(175)	9554(7)	1013(7)	3733(5)	100(4)
C(176)	10156(8)	1070(9)	3594(6)	136(7)
C(177)	10657(9)	1479(9)	3803(7)	145(7)
C(178)	10571(9)	1845(9)	4150(7)	139(7)
C(179)	9992(9)	1785(8)	4291(6)	136(6)
C(180)	9490(8)	1363(8)	4081(5)	116(5)
P(1)	3892(2)	1327(2)	10182(1)	98(1)
P(2)	4623(2)	2721(2)	10859(1)	101(1)

P(3)	3948(2)	2938(2)	9955(1)	95(1)
P(4)	2918(2)	1785(2)	10738(2)	115(1)
P(5)	5520(2)	4268(2)	3624(2)	112(1)
P(6)	5813(2)	3159(2)	3089(2)	112(1)
P(7)	7112(2)	3889(2)	4034(1)	108(1)
P(8)	5904(2)	3035(2)	4344(2)	104(1)
P(9)	7455(2)	754(2)	4156(1)	98(1)
P(10)	7111(2)	93(2)	3166(1)	95(1)
P(11)	8901(2)	475(2)	3443(1)	101(1)
P(12)	8077(2)	-623(2)	3855(1)	98(1)

checkCIF/PLATON report (justification)

Alert level B

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds 0.02913 Ang.

Response: The structure contains disordered phenyl moieties. This

caused low accuracies in C-C bonds

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Ag1 1.93 eA-3

Response: These are Fourier truncation ripples around the heavy atoms.

Supplementary Table 5 | Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for AuAg₁₆ nanocluster. *U*(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. Check CIF justifications of level A and level B alerts.

	x	у	Ζ	U(eq)	
 Au(1)	6667	3333	5573(1)	164(2)	
Ag(1)	7283(2)	3818(2)	5951(1)	169(2)	
Ag(2)	6783(2)	3929(2)	5195(1)	176(2)	
Ag(3)	6980(2)	4364(2)	5650(1)	172(2)	
Ag(4)	7690(2)	4070(2)	5505(1)	172(2)	

Ag(5)	6667	3333	6374(2)	180(3)
Ag(6)	6440(2)	4707(2)	5308(1)	187(2)
S(1)	7591(6)	4060(6)	6348(3)	182(5)
S(2)	6767(6)	4558(6)	4921(3)	183(5)
S(3)	7092(6)	5227(6)	5613(3)	182(5)
S(4)	8617(6)	4475(6)	5422(3)	189(6)
C(1)	7572(18)	4631(17)	6396(9)	188(9)
C(2)	7660(20)	5098(19)	6206(9)	188(9)
B(1)	8140(20)	5185(18)	6394(11)	188(9)
B(2)	7800(20)	4936(19)	6645(10)	190(9)
B(3)	7190(20)	4656(19)	6603(10)	190(9)
B(4)	7120(20)	4790(20)	6332(11)	189(9)
B(5)	8010(20)	5660(20)	6335(10)	189(10)
B(6)	8120(20)	5583(19)	6598(11)	189(10)
B(7)	7490(20)	5240(19)	6732(9)	191(10)
B(8)	7110(20)	5156(18)	6549(11)	190(9)
B(9)	7380(20)	5430(20)	6300(10)	190(9)
B(10)	7657(19)	5734(18)	6547(9)	191(9)
C(3)	6200(14)	4191(15)	4754(7)	196(9)
C(4)	6363(19)	4261(18)	4479(8)	209(11)
B(11)	5643(17)	3641(15)	4805(7)	197(11)
B(12)	5651(17)	4211(16)	4793(7)	195(10)
B(13)	6081(16)	4589(14)	4591(8)	201(10)
B(14)	5850(20)	3710(20)	4330(10)	212(12)
B(15)	5860(20)	4282(17)	4338(8)	211(12)
B(16)	5440(16)	4262(16)	4535(8)	203(11)
B(17)	5160(13)	3678(16)	4669(8)	200(11)
B(18)	5390(20)	3312(16)	4558(9)	201(12)
B(19)	5300(17)	3719(17)	4387(8)	204(12)
B(20)	6043(19)	3662(16)	4595(9)	204(10)
C(5)	7683(14)	5653(15)	5473(8)	200(10)
C(6)	7840(20)	6263(17)	5406(10)	209(11)
B(21)	7670(30)	5820(20)	5199(8)	208(11)
B(22)	7930(30)	5440(30)	5269(10)	211(11)
B(23)	8210(20)	5600(20)	5529(12)	205(11)
B(24)	8210(20)	6160(20)	5589(12)	208(12)

B(25)	8800(30)	6350(30)	5498(10)	218(13)
B(26)	8470(30)	6640(30)	5410(10)	217(12)
B(28)	8280(30)	5930(20)	5075(12)	217(13)
B(27)	8180(20)	6420(30)	5155(12)	218(12)
B(29)	8550(30)	5860(20)	5315(12)	216(11)
B(30)	8754(16)	6450(20)	5216(9)	221(13)
C(7)	8967(13)	4611(15)	5684(6)	172(9)
C(8)	9173(16)	4189(15)	5728(9)	174(9)
B(31)	8730(20)	4192(18)	5904(9)	172(10)
B(32)	8850(20)	4802(18)	5935(9)	179(9)
B(33)	9368(18)	5216(14)	5781(11)	181(10)
B(34)	9611(13)	4834(16)	5702(13)	179(10)
B(35)	8982(16)	4520(19)	6155(12)	181(11)
B(36)	9420(20)	5128(19)	6068(12)	188(11)
B(37)	9920(20)	5150(18)	5923(11)	187(11)
B(38)	9770(20)	4531(19)	5883(10)	183(10)
B(39)	9170(17)	4165(18)	5998(11)	179(10)
B(40)	9614(15)	4704(17)	6129(7)	189(11)
Au(2)	4924(1)	4733(1)	7277(1)	213(2)
P(1)	4542(7)	4490(7)	6904(4)	219(6)
P(2)	5682(7)	4807(7)	7108(4)	212(7)
P(3)	4822(9)	5337(9)	7503(5)	280(8)
P(4)	4427(8)	4117(8)	7566(4)	254(7)
C(15)	5590(20)	4820(20)	6827(11)	234(16)
C(16)	4990(20)	4370(20)	6809(10)	206(15)
C(9)	5830(20)	4273(14)	7177(11)	256(13)
C(10)	6106(17)	4141(19)	7032(7)	262(15)
C(11)	6125(15)	3690(20)	7069(9)	261(15)
C(12)	5860(20)	3379(12)	7252(11)	281(18)
C(13)	5585(17)	3510(20)	7397(7)	291(17)
C(14)	5566(16)	3960(20)	7359(9)	278(15)
C(17)	6296(14)	5464(16)	7142(10)	256(13)
C(18)	6630(30)	5416(17)	7286(9)	290(17)
C(19)	7100(20)	5850(30)	7346(7)	311(19)
C(20)	7218(13)	6330(20)	7261(10)	320(20)
C(21)	6880(20)	6376(14)	7117(9)	308(19)

C(22)	6418(19)	5940(30)	7057(7)	303(17)
C(23)	4490(20)	4990(20)	6723(9)	243(14)
C(24)	4226(15)	4855(13)	6519(11)	250(15)
C(25)	4257(16)	5230(30)	6374(6)	261(16)
C(26)	4560(20)	5750(20)	6432(9)	269(18)
C(27)	4823(15)	5887(14)	6635(11)	261(17)
C(28)	4792(17)	5510(30)	6781(6)	248(15)
C(29)	3884(12)	3906(14)	6861(8)	216(12)
C(30)	3806(15)	3460(20)	6754(7)	244(16)
C(31)	3310(20)	3040(13)	6735(7)	247(16)
C(32)	2896(11)	3066(15)	6822(8)	247(17)
C(33)	2974(16)	3510(20)	6928(7)	229(16)
C(34)	3470(20)	3932(13)	6948(6)	221(15)
C(35)	3991(10)	3420(11)	7481(7)	272(13)
C(36)	3467(10)	3191(12)	7522(7)	281(17)
C(37)	3126(12)	2736(13)	7413(8)	296(18)
C(38)	3309(17)	2509(13)	7263(7)	310(20)
C(39)	3834(18)	2738(13)	7222(7)	323(19)
C(40)	4175(14)	3193(13)	7330(7)	305(17)
C(41)	4810(30)	4050(30)	7809(6)	304(16)
C(42)	4467(16)	3600(20)	7920(14)	326(19)
C(43)	4590(30)	3496(17)	8133(14)	330(20)
C(44)	5050(30)	3850(30)	8235(6)	330(20)
C(45)	5387(17)	4300(20)	8125(11)	320(20)
C(46)	5270(20)	4403(18)	7912(11)	305(19)
C(47)	4420(30)	5570(30)	7349(7)	290(13)
C(48)	4717(14)	6100(30)	7361(8)	303(16)
C(49)	4560(30)	6411(15)	7252(11)	317(17)
C(50)	4100(30)	6190(30)	7131(8)	308(18)
C(51)	3801(16)	5650(30)	7120(6)	297(17)
C(52)	3960(20)	5347(14)	7228(9)	302(16)
C(53)	5320(20)	5857(16)	7698(10)	322(14)
C(54)	5304(18)	6140(20)	7881(11)	335(18)
C(55)	5750(30)	6464(18)	7998(7)	344(19)
C(56)	6217(19)	6510(19)	7932(12)	360(20)
C(57)	6230(20)	6230(30)	7749(13)	364(19)

C(58)	5790(40)	5900(20)	7632(8)	351(17)
C(59)	4290(30)	4820(30)	7726(13)	305(14)
C(60)	3920(30)	4240(30)	7685(13)	295(14)

checkCIF/PLATON report (justification) Alert level A THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550

Calculated sin(theta max)/wavelength = 0.4539Response: The crystal is very weakly diffracting at higher angles. Even though data was collected up to 0.82 A resolution, the crystal did not diffract at higher angles. Hence a resolution cut was applied during data integration. This is the only crystal that we could obtain after several repeated crystallization. PLAT084 ALERT 3 A High wR2 Value (i.e. > 0.25) 0.54 Report Response: The crystal diffracted extremely weakly. Also the peripheral moieties are highly disordered. Inclusion of very weak reflections above 35 degrees caused high wR2. PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Au1 5.12 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Au2 3.11 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Ag1 3.04 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Ag3 2.92 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate.PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Ag4 2.82 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Ag2 2.76 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Ag5 2.60 eA-3

Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT973 ALERT 2 A Check Calcd Positive Resid. Density on Ag6 2.54 eA-3 Response: The electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. Alert level B PLAT026 ALERT 3 B Ratio Observed / Unique Reflections (too) Low .. 30% Check Response: The data quality is very poor due to very weak diffraction of the crystal. Several attempts were made to prepare the crystal during a period of 6-7 months and we could get this crystal specimen only for the data collection. A total of 21 runs performed by an optimized data collection strategy, however only 5 runs contain diffraction spots. PLAT082 ALERT 2 B High R1 Value 0.17 Report Response: Data quality is very poor and also the structure contains disordered moieties. All the carborane moieties are refined using DFIX, SIMU and ISOR restraints. Due to poor resolution of the crystal, AFIX 66 was used to generate idealized coordinates for all phenyl moieties All these factors contributed to high R1 values. The data presented here is only used for representation purpose and to show that the molecule has been formed with the support of other experimental observations. PLAT094 ALERT 2 B Ratio of Maximum / Minimum Residual Density 4.47 Report Response: The residual electron density is observed near a heavy atom. Due to poor quality of the data, absorption correction is not adequate. PLAT342 ALERT 3 B Low Bond Precision on C-C Bonds 0.08463 Ang. Response: Due to poor resolution of the crystal and disorder in phenyl moieties, the accuracies in C-C bonds are low.

	x	У	Ζ	U(eq)	
Cu(1)	6946(1)	1946(1)	6946(1)	82(1)	
Ag(1)	6849(1)	1654(1)	6242(1)	66(1)	
Au(1)	6250	1250	6250	58(1)	
S(1)	7279(1)	2072(1)	6481(1)	88(1)	
C(1)	7172(4)	2489(4)	6307(4)	96(4)	
C(2)	7042(5)	2820(4)	6573(5)	125(5)	
B(1)	7466(8)	2816(6)	6365(8)	160(10)	
B(2)	7418(5)	2635(4)	5976(5)	105(5)	
B(3)	6994(5)	2525(4)	5899(4)	93(4)	
B(4)	6768(5)	2640(4)	6272(4)	95(5)	
B(5)	7225(8)	3215(5)	6381(8)	155(10)	
B(6)	6811(8)	3105(5)	6308(7)	139(8)	
B(7)	6748(6)	2913(4)	5886(5)	112(6)	
B(8)	7171(6)	2916(5)	5732(6)	134(8)	
B(9)	7441(8)	3097(6)	6017(8)	156(10)	
B(10)	7040(7)	3259(5)	5981(7)	143(8)	

Supplementary Table 6 | Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for AuAg₁₂Cu₄ nanocluster. *U*(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. Check CIF justifications of level A and level B alerts.

checkCIF/PLATON report (justification)

Alert level B

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Ag1 1.76 eA-3 Response: Residual electron density is found near the metal atoms as expected for heavy atom structures, which are probably due to absorption error or Fourier ripples around the heavy atom.

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Au1 1.76 eA-3 Response: Residual electron density is found near the metal atoms as expected for heavy atom structures, which are probably due to absorption error or Fourier ripples around the heavy atom.