Ultraviolet Photolysis of CO₂ Clathrate Hydrate and H₂O-CO₂ Mixed Ice under Ultrahigh Vacuum

Gaurav Vishwakarma^a, Bijesh K. Malla^a, Soham Chowdhury^a, Jyotirmoy Ghosh^b, Rabin Rajan J. Methikkalam^c, Rajnish Kumar^{*de}, and Thalappil Pradeep^{*ae}

- ^{*a.*} DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- ^{b.} Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- ^c Department of Chemistry, Mar Ivanios College, Thiruvananthapuram, Kerala 695015, India
- ^{d.} Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- e. International Centre for Clean Water, IIT Madras Research Park, Chennai 600113, India

Corresponding author

*Email: pradeep@iitm.ac.in, rajnish@iitm.ac.in

This PDF file includes: Fig. S1 to S5 (pages S2-S6) References (page S7)

Fig. S1. RAIR spectra recorded before (golden trace) and after 4 h of photolysis (blue trace) of ~50 ML pure CO₂ ice at 10 K. For this, ~50 ML of pure CO₂ ice was prepared by vapor deposition at 10 K and photolyzed by VUV for 4 h. The photon-induced products detected by RAIR were CO (2143 cm⁻¹), CO₃ (2045 cm⁻¹), and O₃ (1044 cm⁻¹). The peak assignments are consistent with previous studies.^{1,2} The inset (i) illustrates the evolution of CO and CO₃. CO production steadily increases over time, while CO₃ initially rises before declining. Similarly, inset (ii) shows the production of O₃ which increases with prolonged exposure to VUV. By estimating the area under the curve of 3708 cm⁻¹ peak, we calculated the column density of CO₂ (band strength of 3708 cm⁻¹ = 1.4×10^{-18} cm molecule⁻¹)³ and found that after subjecting the pure CO₂ ice to VUV exposure for 4 h, approximately 19.51% of the total CO₂ was depleted.

Fig. S2. RAIR spectra of ~100 ML H_2O-CO_2 (5:1) ice before and after VUV exposure in the full range, 4000-1000 cm⁻¹. Ice sample was prepared by vapor deposition at 10 K and photolyzed for 4 h. RAIR spectra were collected at regular intervals. No photon-induced products were detected by RAIRS.

Fig. S3. RAIR spectra of ~100 ML H_2O-CO_2 (5:1) mixed ice in the O-H stretching region: (a) before and after VUV exposure at 10 K, and (b) after annealing to 120 K, cooling back to 10 K, and subsequent 2 h of VUV photolysis at 10 K. The greater intensity decrease in (b) compared to (a) occurs because annealing to 120 K orders H_2O molecules, which then undergo disordering during VUV photolysis.

Fig. S4. Comparison of RAIR spectra in the O-H stretching bands of pure water (dotted lines) and H_2O-CO_2 (5:1) mixture (solid lines) at 10 and 120 K. The change in shape and intensity of the O-H stretching band in the presence of CO_2 at 10 and 120 K suggests the formation of CO_2 sI CH.⁴

Fig. S5. Full range RAIR spectra of (a) ~100 ML H₂O-CO₂ (5:1) ice, and (b) ~30 ML O₂@100 ML H₂O-CO₂ (5:1) composite film at 10 K before and after VUV exposure. In both cases, sample was prepared by vapor deposition at 10 K. The resulting ice was heated at rate of 5 K min⁻¹ to 120 K, and cooled down to 10 K. Then, the ice sample was exposed to VUV for 2 h and RAIR spectra were collected at regular intervals. Insets in both (a) and (b) show the reduction in the area under the curve for CH peaks while increase for CO₂ in ASW, which depicts CH decomposition and migration of CO₂ to the water matrix. For the H₂O-CO₂ (5:1) ice containing a small fraction of O₂, the decomposition of CH was slightly higher, as presented in the inset of (b). For ~100 ML H₂O-CO₂ (5:1) ice, the ice was prepared on Ru(0001) by codeposition of CO₂ gas and H₂O vapor at 10 K. The ~30 ML O₂@100 ML H₂O-CO₂ (5:1) composite film was prepared by first creating 30 ML of O₂ ice on Ru(0001) followed by codeposition of ~100 ML H₂O-CO₂ (5:1) mixture on top of it.

References

- Gerakines, P. A.; Moore, M. H.; Hudson, R. L. Carbonic Acid Production in H2O:CO2 Ices - UV Photolysis vs. Proton Bombardment. *Astron. Astrophys.* 2000, 357 (2), 793– 800.
- (2) Mifsud, D. V.; Kaňuchová, Z.; Ioppolo, S.; Herczku, P.; Traspas Muiña, A.; Field, T. A.; Hailey, P. A.; Juhász, Z.; Kovács, S. T. S.; Mason, N. J.; McCullough, R. W.; Pavithraa, S.; Rahul, K. K.; Paripás, B.; Sulik, B.; Chou, S.-L.; Lo, J.-I.; Das, A.; Cheng, B.-M.; Rajasekhar, B. N.; Bhardwaj, A.; Sivaraman, B. Mid-IR and VUV Spectroscopic Characterisation of Thermally Processed and Electron Irradiated CO2 Astrophysical Ice Analogues. J. Mol. Spectrosc. **2022**, 385, 111599.
- (3) Wu, C. Y. R.; Judge, D. L.; Cheng, B. M.; Yih, T. S.; Lee, C. S.; Ip, W. H. Extreme Ultraviolet Photolysis of CO2-H2O Mixed Ices at 10 K. J. Geophys. Res. Planets 2003, 108 (4), 5032.
- (4) Netsu, R.; Ikeda-Fukazawa, T. Formation of Carbon Dioxide Clathrate Hydrate from Amorphous Ice with Warming. *Chem. Phys. Lett.* **2019**, *716*, 22–27.