Supporting Information

Solvent-Modulated Luminescent Spheroidal Assemblies of Cu₈ Nanocluster for Volatile Amine Sensing

Subrata Duary, ^{*a*} Arijit Jana, ^{*a*} Amitabha Das, ^{*b*} Ankit Sharma, ^{*c*} Biswarup Pathak, ^{**b*} Kumaran Nair Valsala Devi Adarsh, ^{**c*} and Thalappil Pradeep^{*a}

Authors affiliations

^a DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India.

*E-mail: pradeep@iitm.ac.in

^b Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.

*E-mail: <u>biswarup@iiti.ac.in</u>

^c Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.

*E-mail: adarsh@iiserb.ac.in

Table of contents

Items	Descriptions	Page No
	Experimental set up for amine sensing	S3
	emphasizing foodstuffs (fish and chicken)	
	spoilage monitoring	
Table S1	Crystal data and structure refinement of	S3
	[Cu ₈ (TFMPT) ₄ (DPPE) ₄]	
Table S2	Atomic coordinates and equivalent isotropic	S4-S9
	displacement parameters for Cu ₈ NC	
Figure S1	Essential characterization of	S9
	$[Cu_{18}H_{16}(DPPE)_6]^{2+}$ nanoclusters	
Figure S2	FESEM images and EDS elemental	S10
	spectrum of Cu ₈	
Figure S3	Comparative structures of Cu ₈ clusters	S10
	reported in literature	
Figure S4	Metal clusters per unit cell and bond	S11
	distances	
Figure S5	UV-vis. spectra of cluster	S11

Figure S6	Collision energy-dependent fragmentation	S12
	of fragmented species	
Figure S7	XPS spectra of Cu ₈	S12
Figure S8	ORTEP structure	S13
Figure S9	FTIR spectra	S13
Figure S10	DFT optimized structure of cluster and	S14
	electronic transitions showing MOs	
	involved	
Figure S11	Photograph of vials with 80% volume	S14
	fraction of different polar protic solvents	
	under UV	
Figure S12	DLS measurement of cluster aggregates	S14
Figure S13	HRSEM of cluster aggregates at different	S15
	vol% water	
Figure S14	TEM images of spheroidal assembly	S15
Figure S15	TCSPC of aggregates at different vol%	S15
	water	
Figure S16	pH-induced luminescence switching	S16
Figure S17	Oxygen sensing through PL measurement	S16
Figure S18	Stability of luminescent spheroids through	S17
	PL study	
Figure S19	Effect of heating on PL intensity of	S17
	luminescent spheroids	
Figure S20	Sensing of volatile amines	S18
Figure S21	Rate of PL intensity change upon amines	S18
	(NH ₃ and Me ₃ N) exposure	
Figure S22	Limit of detection (LoD) curve of NH ₃ and	S19
	Me ₃ N	
Figure S23	UV-vis spectra of cluster-assembled	S19
	spheroids after sensing experiment	
Figure S24	Powder X-ray diffraction spectra of Cu ₈	S20
Figure S25	Thermogravimetry (TG) and derivative	S20
	thermogravimetry (DTG) plot of Cu ₈	
	References	

Experimental set up for visual detection of volatile amine sensing, emphasizing on foodstuffs (fish and chicken) spoilage monitoring.

Table S1. Crystal data and structure refinement for Cu_8 NC.

Identification code	Cu ₈ SM			
Empirical formula	$C_{130}H_{114}Cu_8F_{12}N_{10}$	$C_{130}H_{114}Cu_8F_{12}N_{10}O_6P_8S_4$		
Formula weight	3024.63	3024.63		
Temperature	200(2) K	200(2) K		
Wavelength	1.54178 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 16.7932(9) Å	$a=94.644(2)^{\circ}$.		
	b = 16.9244(9) Å	b=97.173(2)°.		
	c = 26.2178(14) Å	$g = 116.938(2)^{\circ}$.		
Volume	6510.8(6) Å ³			
Z	2	2		
Density (calculated)	1.543 Mg/m ³	1.543 Mg/m ³		
Absorption coefficient	3.562 mm ⁻¹	3.562 mm ⁻¹		
F(000)	3072	3072		
Crystal size	0.181 x 0.132 x 0.032	0.181 x 0.132 x 0.032 mm ³		
Theta range for data collection	1.719 to 68.482°.	1.719 to 68.482°.		
Index ranges	-20<=h<=20, -20<=k<	-20<=h<=20, -20<=k<=20, -30<=l<=31		

Reflections collected	226915
Independent reflections	23900 [R(int) = 0.0825]
Completeness to theta = 67.679°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6695 and 0.4908
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	23900 / 31 / 1604
Goodness-of-fit on F ²	1.059
Final R indices [I>2sigma(I)]	R1 = 0.0534, $wR2 = 0.1376$
R indices (all data)	R1 = 0.0728, $wR2 = 0.1594$
Extinction coefficient	0.00067(5)
Largest diff. peak and hole	0.518 and -0.562 e.Å ⁻³

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Cu₈ NC. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
Cu(1)	5878(1)	4273(1)	7592(1)	57(1)
Cu(2)	5981(1)	3032(1)	8074(1)	57(1)
Cu(3)	6734(1)	3089(1)	7270(1)	57(1)
Cu(4)	5088(1)	2802(1)	6942(1)	58(1)
Cu(5)	6737(1)	5751(1)	8369(1)	61(1)
Cu(6)	6148(1)	1602(1)	8493(1)	63(1)
Cu(7)	7364(1)	3120(1)	6358(1)	63(1)
Cu(8)	3327(1)	2642(1)	6689(1)	66(1)
C(1)	7239(3)	3328(3)	4960(2)	71(1)
C(2)	6759(5)	3802(5)	5006(3)	107(2)
C(3)	6354(6)	3969(6)	4566(3)	131(3)
C(4)	6409(5)	3656(6)	4083(3)	117(2)
C(5)	6910(5)	3218(4)	4028(2)	99(2)
C(6)	7321(4)	3050(4)	4465(2)	83(1)
C(7)	8955(3)	3658(3)	5526(2)	71(1)
C(8)	9478(4)	4491(4)	5819(2)	90(2)
	. /			. ,

C(9)	10392(4)	4983(5)	5798(3)	105(2)
C(10)	10788(4)	4640(5)	5495(3)	103(2)
C(11)	10299(4)	3811(5)	5205(3)	106(2)
C(12)	9380(4)	3317(4)	5218(2)	90(2)
C(13)	7399(3)	1890(3)	5372(2)	71(1)
C(14)	7683(3)	1534(3)	5837(2)	72(1)
C(15)	6058(3)	782(3)	6241(2)	71(1)
C(16)	5358(4)	969(4)	6117(3)	94(2)
C(17)	4479(4)	296(5)	5948(3)	114(2)
C(18)	4286(5)	-569(5)	5918(3)	105(2)
C(19)	4980(5)	-783(4)	6040(3)	115(2)
C(20)	5874(4)	-102(4)	6207(3)	102(2)
C(21)	7895(3)	1548(3)	6925(2)	69(1)
C(22)	7602(4)	846(4)	7209(2)	87(2)
C(23)	8213(5)	764(5)	7575(3)	106(2)
C(24)	9107(4)	1377(5)	7676(2)	99(2)
C(25)	9400(4)	2091(4)	7419(2)	90(2)
C(26)	8801(4)	2187(4)	7045(2)	80(1)
C(27)	6233(3)	-547(3)	8139(2)	72(1)
C(28)	5652(4)	-765(3)	7675(2)	81(1)
C(29)	5558(5)	-1438(4)	7296(3)	103(2)
C(30)	6060(5)	-1883(4)	7383(3)	108(2)
C(31)	6624(5)	-1686(4)	7836(3)	104(2)
C(32)	6734(4)	-1018(4)	8221(2)	88(2)
C(33)	5700(3)	-327(3)	9097(2)	72(1)
C(34)	4891(5)	-366(5)	9156(3)	120(3)
C(35)	4376(6)	-907(7)	9484(4)	168(4)
C(36)	4697(6)	-1362(5)	9777(4)	133(3)
C(37)	5489(6)	-1336(4)	9725(3)	109(2)
C(38)	5994(5)	-828(4)	9385(2)	92(2)
C(39)	7509(3)	876(3)	8953(2)	73(1)
C(40)	7704(3)	1637(3)	9372(2)	74(1)
C(41)	7302(3)	3047(3)	9713(2)	68(1)
C(42)	6828(4)	3525(4)	9676(2)	93(2)
C(43)	6766(5)	3992(6)	10114(3)	120(2)
C(44)	7164(5)	3965(5)	10594(3)	115(2)
C(45)	7630(5)	3489(5)	10644(2)	101(2)
C(46)	7708(4)	3043(4)	10207(2)	86(2)

C(47)	8429(3)	3309(3)	8954(2)	60(1)
C(48)	8649(4)	3140(4)	8480(2)	75(1)
C(49)	9457(4)	3755(4)	8348(2)	83(1)
C(50)	10035(4)	4528(4)	8677(2)	84(1)
C(51)	9807(4)	4703(4)	9142(2)	83(1)
C(52)	9014(3)	4105(3)	9282(2)	74(1)
C(53)	8417(3)	8067(3)	8753(2)	73(1)
C(54)	8770(4)	7991(4)	8312(2)	93(2)
C(55)	9310(4)	8737(6)	8109(3)	116(2)
C(56)	9497(5)	9573(6)	8352(4)	137(3)
C(57)	9164(5)	9664(5)	8788(4)	127(3)
C(58)	8619(4)	8911(4)	8988(3)	98(2)
C(59)	8331(3)	7010(3)	9568(2)	67(1)
C(60)	8572(4)	7609(4)	10024(2)	81(1)
C(61)	9089(4)	7553(4)	10464(2)	92(2)
C(62)	9369(5)	6918(5)	10448(3)	107(2)
C(63)	9147(6)	6334(5)	10000(3)	130(3)
C(64)	8627(5)	6374(4)	9563(2)	102(2)
C(65)	6812(3)	7310(3)	9201(2)	67(1)
C(66)	6008(3)	6449(3)	9276(2)	67(1)
C(67)	4782(3)	6066(3)	8303(2)	64(1)
C(68)	4645(4)	6767(4)	8501(2)	85(2)
C(69)	4106(4)	7043(4)	8199(3)	102(2)
C(70)	3683(4)	6608(4)	7702(3)	96(2)
C(71)	3805(5)	5907(5)	7507(2)	103(2)
C(72)	4358(4)	5649(4)	7801(2)	85(2)
C(73)	4685(3)	4676(3)	8903(2)	63(1)
C(74)	3790(3)	4475(4)	8908(2)	88(2)
C(75)	3242(4)	3747(5)	9130(3)	107(2)
C(76)	3571(4)	3212(4)	9339(2)	91(2)
C(77)	4444(4)	3402(4)	9332(2)	91(2)
C(78)	4997(4)	4121(4)	9112(2)	81(1)
C(79)	3487(4)	2642(3)	5371(2)	80(1)
C(80)	2843(4)	2441(4)	4929(2)	97(2)
C(81)	2803(6)	1909(6)	4491(3)	127(3)
C(82)	3381(9)	1578(7)	4486(3)	164(4)
C(83)	4026(9)	1750(8)	4913(4)	190(5)
C(84)	4062(6)	2284(6)	5358(3)	130(3)

C(85)	4519(3)	4393(3)	5999(2)	71(1)
C(86)	4698(4)	4996(4)	6439(2)	87(2)
C(87)	5384(5)	5855(4)	6502(3)	113(2)
C(88)	5908(5)	6118(5)	6133(4)	125(3)
C(89)	5768(5)	5520(6)	5703(3)	117(2)
C(90)	5070(4)	4642(4)	5629(2)	87(2)
C(91)	2586(4)	3537(4)	5847(2)	80(1)
C(92)	1724(3)	2735(4)	5924(2)	80(1)
C(93)	1208(5)	3753(5)	6780(3)	98(2)
C(94)	1087(5)	4362(5)	7096(3)	115(2)
C(95)	1395(5)	4523(5)	7609(3)	109(2)
C(96)	1838(4)	4077(5)	7827(3)	108(2)
C(97)	1991(4)	3487(4)	7513(2)	90(2)
C(98)	1677(3)	3315(4)	6981(2)	76(1)
C(99)	880(4)	1423(4)	6577(2)	81(1)
C(100)	998(5)	756(5)	6771(3)	129(3)
C(101)	259(6)	-78(6)	6776(4)	155(4)
C(102)	-593(5)	-221(6)	6584(3)	128(3)
C(103)	-717(5)	429(5)	6382(4)	130(3)
C(104)	8(4)	1256(5)	6377(3)	109(2)
C(105)	4880(3)	1164(3)	7352(2)	57(1)
C(106)	3586(3)	-109(3)	7315(2)	79(1)
C(107)	3098(3)	174(3)	7005(2)	77(1)
C(108)	3554(3)	1034(3)	6856(2)	64(1)
C(109)	3132(4)	-1007(5)	7493(4)	128(3)
C(110)	4046(3)	2599(3)	7903(2)	56(1)
C(111)	4434(3)	1782(3)	8475(2)	62(1)
C(112)	3501(3)	1328(3)	8513(2)	74(1)
C(113)	2928(3)	1572(3)	8243(2)	72(1)
C(114)	1941(4)	1123(5)	8277(3)	101(2)
C(115)	6793(3)	4666(3)	6685(2)	56(1)
C(116)	7100(3)	5927(3)	7276(2)	59(1)
C(117)	7758(3)	6444(3)	6985(2)	66(1)
C(118)	7864(3)	6011(3)	6562(2)	67(1)
C(119)	8555(4)	6518(4)	6236(3)	90(2)
C(120)	7954(3)	4779(3)	7987(2)	56(1)
C(121)	8578(3)	4477(3)	7291(2)	58(1)
C(122)	9373(3)	5292(3)	7495(2)	67(1)

C(123)	9378(3)	5771(3)	7934(2)	66(1)
C(124)	10221(4)	6638(4)	8172(3)	90(2)
O(1)	8504(2)	4001(2)	6876(1)	69(1)
O(2)	6947(2)	6262(2)	7675(1)	69(1)
O(3)	5012(2)	1596(2)	8716(1)	72(1)
O(4)	3151(2)	1356(2)	6572(1)	74(1)
S (1)	7004(1)	4480(1)	8308(1)	55(1)
S(2)	6065(1)	1821(1)	7610(1)	56(1)
S(3)	4375(1)	3402(1)	7469(1)	57(1)
S(4)	6198(1)	3485(1)	6492(1)	56(1)
P(1)	7745(1)	3092(1)	5546(1)	64(1)
P(2)	7201(1)	1727(1)	6401(1)	64(1)
P(3)	6309(1)	329(1)	8626(1)	65(1)
P(4)	7382(1)	2471(1)	9120(1)	62(1)
P(5)	7666(1)	7036(1)	8971(1)	62(1)
P(6)	5484(1)	5658(1)	8664(1)	59(1)
P(7)	3562(1)	3296(1)	5969(1)	67(1)
P(8)	1879(1)	2501(1)	6594(1)	72(1)
N(1)	8678(2)	5557(2)	8190(1)	63(1)
N(2)	7873(2)	4218(2)	7566(1)	54(1)
N(3)	6625(2)	5019(2)	7112(1)	55(1)
N(4)	7398(2)	5118(2)	6395(1)	63(1)
N(5)	4483(3)	364(2)	7497(2)	71(1)
N(6)	4476(2)	1519(2)	7043(1)	57(1)
N(7)	4691(2)	2447(2)	8169(1)	57(1)
N(8)	3173(2)	2200(3)	7925(2)	66(1)
F(1)	8902(4)	7385(3)	6360(2)	176(2)
F(2)	8202(4)	6346(4)	5742(2)	164(2)
F(3)	9211(3)	6325(3)	6257(2)	154(2)
F(4)	1504(3)	376(4)	7972(3)	204(3)
F(5)	1786(3)	910(5)	8732(2)	190(3)
F(6)	1518(3)	1556(4)	8163(3)	185(3)
F(7)	3395(4)	-1568(3)	7270(3)	203(3)
F(8)	2266(3)	-1424(3)	7349(3)	199(3)
F(9)	3353(4)	-1003(4)	7969(3)	216(4)
F(10)	10963(2)	6659(3)	8060(2)	152(2)
F(11)	10362(3)	6760(3)	8684(2)	156(2)
F(12)	10191(3)	7332(2)	8032(2)	156(2)

C(125)	1912(8)	-1054(7)	9055(5)	193(5)
C(126)	747(8)	-1182(12)	9510(6)	263(9)
C(127)	2161(10)	159(7)	9670(4)	195(6)
N(9)	1609(6)	-651(5)	9453(3)	140(3)
O(5)	2136(5)	679(5)	9940(3)	187(3)
O(6)	1704(11)	-1468(6)	5775(5)	276(6)
N(10)	1120(6)	-649(6)	5476(3)	159(3)
C(129)	1395(11)	273(9)	5383(7)	346(12)
C(128)	1861(10)	-760(10)	5676(6)	250(8)
C(130)	215(9)	-1277(10)	5337(7)	289(9)

Figure S1. (a) Scheme for synthesis of Cu_{18} NC. (b) UV-vis. and ESI MS spectra of as synthesized Cu_{18} NC Atomic color code: orange=Cu, yellow=S, green=P, grey=C, red=O, blue=N, F= light green and white/magenta=H.

Figure S2. (a) FESEM images of agglomerated sheets of single crystals. (b) EDS mapping of each elements. (c) EDS spectra. (d) Weight and atomic percentage of elements from FESEM analysis.

Figure S3. A comparison between single crystal structure of reported Cu_8 clusters, such as (a) puckered core ¹ (b) cubic structure ² (c) two fused tetrahedron ³, (d) bi-capped octahedral, ⁴ (e) one tetrahedral stapled by two Cu_2 unit ⁵ along with tetrahedral Cu_4 unit and (f) tetra capped distorted square planner structure. Atomic color code: orange=Cu, yellow=S, green=P, grey=C, red=O, blue=N, F= light green and white=H.

Figure S4. (a,b) Complete structure and core of clusters per unit cell. (c,d,e,f,g,h) bond distances of inner Cu-Cu, outer Cu-Cu, Cu-S, Cu-N, Cu-O and Cu-P respectively. Atomic color code: orange=Cu, yellow=S, green=P, grey=C, red=O, blue=N, F= light green and white=H.

Figure S5. UV-vis. spectra of Cu₈ NC dissolved in acetonitrile indicating stability up to 15 days.

Figure S6. Collision energy dependent fragmentation of fragmented species. Inset shows molecular formula.

Figure S7. XPS survey spectra of singe crystals showing presence of respective elements. Expanded peak fittings of spectral region for each elements are shown. Inset shows Cu LMM auger spectral region.

Figure S8. ORTEP structure of Cu₈ nanocluster with 50% thermal ellipsoid parameters.

Figure S9. FTIR spectrum of Cu₈ NC in compared to the free ligand. Stretching vibrations are mentioned here.

Figure S10. (a) DFT optimized structure of Cu₈. (b) Atomic color code: blue=Cu, green=S, grey=C,yellow=P, red=O, peaceful blue=N and bright blue=H.

Figure S11. Volume fraction (80%) of polar protic solvents under UV light (365 nm) showing no emission from mixture.

Figure S12. Dynamic Light Scattering (DLS) data of aggregated luminescent clusters with different vol% of water.

Figure S13. HRSEM images of clusters assembled spheroids at different vol% of water.

Figure S14. Transmission electron microscopy (TEM) image of spheroids (80% volume fraction of water) under 300 kV.

Figure S15. Lifetime decay profile of luminescent aggregates at different vol% of water (a) 85%, (b) 60% and (c) 50%. A deconvolution fit including the Instrument Response Function (IRF) of the laser diode (405 nm) was performed.

Figure S16. (a) pH-induced luminescence intensity change. (b) pH-based luminescence switching. (c) Surface morphology of spheroids upon change in pH from neutral to pH 10.

Figure S17. Comparative PL spectra of luminescent aggregates before and after oxygen exposure (Excitation at 365nm).

Figure S18. PL spectra for stability of luminescent aggregates, showed its ambient stability after 30 days (Excitation at 365 nm).

Figure S19. PL spectra of luminescent aggregates upon heating at different temperatures (Excitation at 365 nm and emission at 625 nm).

Figure S20. Comparative PL spectra of luminescent aggregates of Cu_8 clusters before and after the exposure to amine vapors (Excitation at 365 nm). Exposure time 12 mins.

Figure S21. PL intensity change with time for (a) NH₃ and (b) NMe₃ respectively.

Figure S22. PL intensity change with concentration upon addition of (a) liquid NH₃ and (b) liquid NMe₃ to suspended aggregates in water respectively.

Figure 23. Stability check of cluster through UV-vis spectroscopy. (a) absorption spectra of solution before and after adding NH₃ to cluster-assembled luminescent aggregates. (b) absorption spectra of solution before and after adding Me₃N to cluster-assembled luminescent aggregates.

Figure S24. Comparative powder x-ray diffraction pattern of solid Cu₈ NC.

Figure S25. Thermogravimetry (TG) and derivative thermogravimetry (DTG) spectra of Cu_8 NC. Initial mass loss is possibly due to the evaporation of solvent molecules.

References

- Wang, Y.M.; Lin, X.C.; Mo, K.M.; Xie, M.; Huang, Y.L.; Ning, G.H.; Li, D. An Atomically Precise Pyrazolate-Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. *Angew. Chem. Int. Ed.* 2023, *62*(9), 202218369.
- (2) Liao, P.K.; Sarkar, B.; Chang, H.W.; Wang, J.C.; Liu, C.W. Facile entrapment of a hydride inside the tetracapped tetrahedral Cu^I₈ cage inscribed in a S₁₂ icosahedral framework. *Inorg. Chem.* 2009, 48(9), 4089-4097.
- (3) Liu, L.J.; Wang, Z.Y.; Wang, Z.Y.; Wang, R.; Zang, S.Q.; Mak, T.C. Mediating CO₂ electroreduction activity and selectivity over atomically precise copper clusters. *Angew. Chem.* 2022, *134*(35), 202205626.
- (4) Sun, P.P.; Han, B.L.; Li, H.G.; Zhang, C.K.; Xin, X.; Dou, J.M.; Gao, Z.Y.; Sun, D. Real-Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Self-Assembly of Atom-Precise Cu₈ Nanocluster. *Angew. Chem.* 2022, *134*(20), 202200180.
- (5) Xu, Y.; Dong, Q.G.; Dong, J.P.; Zhang, H.; Li, B.; Wang, R.; Zang, S.Q. Assembly of copper-clusters into a framework: enhancing the structural stability and photocatalytic HER performance. *Chem. Commun.* **2023**, *59*(21), 3067-3070.